
1

Distributed systems

Causal Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory

2

Overview
!   Intuitions: why causal broadcast?
!   Specifications of causal broadcast
!   Algorithms:

!   A non-blocking algorithm using the past
and

!   A blocking algorithm using vector
clocks

3

Broadcast

B

A

C

m

m

deliver

broadcast

deliver

4

Intuition (1)
!   So far, we did not consider ordering among

messages; In particular, we considered
messages to be independent

!   Two messages from the same process might
not be delivered in the order they were
broadcast

!   A message m1 that causes a message m2
might be delivered by some process after m2

5

Intuition (2)
!   Consider a system of news where every new

event that is displayed in the screen contains
a reference to the event that caused it, e.g., a
comment on some information includes a
reference to the actual information

!   Even uniform reliable broadcast does not
guarantee such a dependency of delivery

6

Intuition

!   Causal broadcast alleviates the need for
the application to deal with message
dependencies

7

Modules of a process

request

indication

indication

indication

request

8

Overview
!   Intuitions: why causal broadcast?
!   Specifications of causal broadcast
!   Algorithms:

!   A non-blocking algorithm using the past and
!   A blocking algorithm using vector clocks

9

Causal broadcast
!   Events

!   Request: <coBroadcast, m>

!   Indication: <coDeliver, src, m>

•  Property:

•  Causal Order (CO)

10

Causality
!   Let m1 and m2 be any two messages:

m1 -> m2 (m1 causally precedes m2)
iff

!   C1 (FIFO order). Some process pi
broadcasts m1 before broadcasting m2

!   C2 (Local order). Some process pi
delivers m1 and then broadcasts m2

!   C3 (Transitivity). There is a message
m3 such that m1 -> m3 and m3 - > m2

11

Causal broadcast
!   Events

!   Request: <coBroadcast, m>

!   Indication: <coDeliver, src, m>

•  Property:

•  CO: If any process pi delivers a message
m2, then pi must have delivered every
message m1 such that m1 -> m2

12

Causality ?

p1

p2

p3

m2
delivery

delivery

delivery

m1

m1
delivery

m2

delivery

delivery

13

Causality ?

p1

p2

p3

m2
delivery

delivery

m1

m1
delivery

m2

delivery

delivery

14

Causality ?

p1

p2

p3

m2

delivery

delivery

delivery

m1

m1
delivery

delivery

delivery

m2

15

Reliable causal broadcast (rcb)
!   Events

!   Request: <rcoBroadcast, m>

!   Indication: <rcoDeliver, src, m>

•  Properties:

•  RB1, RB2, RB3, RB4 +

•  CO

16

Uniform causal broadcast (ucb)
!   Events

!   Request: <ucoBroadcast, m>

!   Indication: <ucoDeliver, src, m>

•  Properties:

•  URB1, URB2, URB3, URB4 +

•  CO

17

Overview
!   Intuitions: why causal broadcast?
!   Specifications of causal broadcast
!   Algorithms:

!   A non-blocking algorithm using the past
and

!   A blocking algorithm using vector
clocks

18

Algorithms
!   We present reliable causal broadcast

algorithms using reliable broadcast

!   We obtain uniform causal broadcast
algorithms by using instead an underlying
uniform reliable broadcast

19

Algorithm 1
!   Implements: ReliableCausalOrderBroadcast (rco).

!   Uses: ReliableBroadcast (rb).

!   upon event < Init > do

!   delivered := past := ∅;

!   upon event < rcoBroadcast, m> do

!   trigger < rbBroadcast, [Data,past,m]>;

!   past := past U {[self,m]};

20

Algorithm 1 (cont’d)
!   upon event <rbDeliver,pi,[Data,pastm,m]> do

!   if m ∉ delivered then

!  (*) forall [sn, n] ∈ pastm do

!   if n ∉ delivered then

!   trigger < rcoDeliver,sn,n>;

!   delivered := delivered U {n};

!   past := past U {[sn, n]};

21

Algorithm 1 (cont’d)
!   (*)

!   …

!   …

!   trigger <rcoDeliver,pi,m>;

!   delivered := delivered U {m};

!   past := past U {[pi,m]};

22

Algorithm 1

p1

p2

p3

m2(m1)

m2

m1

m1

m1

 m1
 m2(m1)

m2

m2 m1

23

Algorithm 1

p1

p2

p3

m1

m1
 m2(m1)

 m2(m1)
m2

 m1

 m1 m2

 m2 m1

24

Uniformity

!   Algorithm 1 ensures causal reliable broadcast

!   If we replace reliable broadcast with uniform
reliable broadcast, Algorithm 1 would ensure
uniform causal broadcast

25

Algorithm 1’ (gc)
!   Implements: GarbageCollection (+ Algo 1).

!   Uses:

!   ReliableBroadcast (rb).

!   PerfectFailureDetector(P).

!   upon event < Init > do

!   delivered := past := empty;

!   correct := S;

!   ackm := ∅ (for all m);

26

Algorithm 1’ (gc – cont’d)
!   upon event < crash, pi > do

!   correct := correct \ {pi}

•  upon for some m ∈ delivered: self ∉ ackm do

•  ackm := ackm U {self};

•  trigger < rbBroadcast, [ACK,m]>;

27

Algorithm 1’ (gc – cont’d)

!   upon event <rbDeliver,pi,[ACK,m]> do

!   ackm := ackm U {pi};

!   upon event correct ⊆ ackm do

!   past := past \ {[sm, m]};

28

Algorithm 2
!   Implements: ReliableCausalOrderBroadcast (rco).

!   Uses: ReliableBroadcast (rb).

!   upon event < Init > do

!   for all pi ∈ S: VC[pi] := 0;

!   pending := ∅

29

Algorithm 2 (cont’d)

!   upon event < rcoBroadcast, m> do

!   trigger < rcoDeliver, self, m>;

!   trigger < rbBroadcast, [Data,VC,m]>;

!   VC[self] := VC[self] + 1;

30

Algorithm 2 (cont’d)
!   upon event <rbDeliver, pj, [Data,VCm,m]> do

!   if pj ≠ self then

!   pending := pending ∪ (pj, [Data,VCm,m]);

!   Deliver-pending.

31

Algorithm 2 (cont’d)
!   procedure deliver-pending is

!  While (s, [Data,VCm,m]) ∈ pending s.t.

!   for all pk: (VC[pk] ≥ VCm[pk]) do

!   pending := pending - (s, [Data,VCm,m]);

!   trigger < rcoDeliver, self, m>;

!   VC[s] := VC[s] + 1.

32

Algorithm 2

p1

p2

p3
 m2

m1

m1

m1

 m1

 m2

m2

m2 m1

[0,0,0]

 m2

[1,0,0]

33

Algorithm 2

p1

p2

p3

m2

 m1

m1

m1

m1

m2

m2

[1,0,0]

[1,0,0]

[0,0,0]

 m2

 m1

 m2

