Distributed systems

Consensus

Prof R. Guerraoui
Distributed Programming Laboratory

B

Consensus

\

3

A

|

)
s\ig |

\\f-"‘f"—_'
=0
\\EZJ

\

Consensus

* In the consensus problem, the processes
propose values and have to agree on one
among these values

® Solving consensus is key to solving many
problems in distributed computing (e.g., total
order broadcast, atomic commit, terminating
reliable broadcast)

Consensus

C1. Validity. Any value decided is a value
proposed

C2. Agreement: No two correct processes
decide differently

C3. Termination: Every correct process
eventually decides

C4. Integrity. No process decides twice

Consensus
proposet) decide(0)

p1—|—|—>

propose(1) decide(1)

propose(0) decide(0)

p3 | |

Uniform consensus

C1. Validity. Any value decided is a value
proposed

C2’. Uniform Agreement: No two
processes decide differently

C3. Termination: Every correct process
eventually decides

C4. Integrity. No process decides twice

Uniform consensus

0
proposet) decide(0)

p1—|—>

propose(1) decide(0)

propose(0) decide(0)

p3 |

Consensus

Events

®* Request: <Propose, v>

* Indication: <Decide, v’ >
* Properties:

*°C1,C2 C3 C4

Modules of a process

Consensus s
[RU) Rellialole broadeast

cast deliver

Falllre Geactor
Channels

Consensus algorithm I

* A P-based (fail-stop) consensus algorithm

* The processes exchange and update
proposals in rounds and decide on the value
of the non-suspected process with the
smallest id [Gue95]

10

Consensus algorithm I1I

* A P-based (i.e., fail-stop) uniform consensus
algorithm

®* The processes exchange and update proposal
iIn rounds, and after n rounds decide on the
current proposal value [Lyn96]

11

Consensus algorithm III

* A <>P-based uniform consensus algorithm
assuming a correct majority

®* The processes alternate in the role of a
coordinator until one of them succeeds in
imposing a decision [DLS,CT,L,LO]

12

Consensus algorithm I

®* The processes go through rounds
incrementally (1 to n): in each round, the
process with the id corresponding to that
round is the leader of the round

* The leader of a round decides its current
proposal and broadcasts it to all

* A process that is not leader in a round waits
(a) to deliver the proposal of the leader in
that round to adopt it, or (b) to suspect the
leader

13

Consensus algorithm I

Implements: Consensus (cons).
Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).
upon event < Init > do
suspected = O;
round := 1; currentProposal := nil;
broadcast := delivered[] := false;

14

Consensus algorithm I

upon event < crash, pi > do
suspected := suspected U {pi};

°* upon event < Propose, v> do
* if currentProposal = nil then
* currentProposal := v;

15

Consensus algorithm I

upon event < bebDeliver, p,, .4, Value > do
currentProposal := value;
delivered[round] := true;

upon event delivered[round] = true or
Proung € SUSpected do

round := round + 1;

16

Consensus algorithm I

upon event p,_,.,=self and broadcast=false
and currentProposal=nil do

trigger <Decide, currentProposal>;
trigger <bebBroadcast, currentProposal>;
broadcast := true;

17

Consensus algorithm I

propose(0) decide(0)

pl
propose(1) \ /
) ecide(0)
P
propose(0) \ /
p3

-chide(O)

18

Consensus algorithm I

propose(0)
decide(0) crash
pl —|_|H
propose(1) N

decide(1)

propose(0) /
E e e
decide(1)

19

Correctness argument

* | et pi be the correct process with the smallest
id in a run R.

* Assume pi decides V.

® If i = n, then pn is the only correct
process.

® Otherwise, in round i, all correct processes
receive v and will not decide anything
different from v.

20

Consensus algorithm II
* Algorithm II implements uniform consensus

®* The processes go through rounds
incrementally (1 to n): in each round I,
process pl sends its currentProposal to all.

® A process adopts any currentProposal it
receives.

® Processes decide on their currentProposal
values at the end of round n.

21

Consensus algorithm I1I

Implements: Uniform Consensus (ucons).
Uses:
BestEffortBroadcast (beb).

PerfectFailureDetector (P).

- upon event < Init > do

suspected = O;

round := 1; currentProposal := nil;
broadcast := delivered[] := false;
decided := false

22

Consensus algorithm I1I

upon event < crash, pi > do
suspected := suspected U {pi};

*upon event < Propose, v> do
If currentProposal = nil then
currentProposal := v;

23

Consen

upon event <
currentProposa

sus algorithm II

bebDeliver, p,, .4, Value > do
:= value;

delivered[rounc

] 1= true;

24

Consensus algorithm I1I

upon event Proung = Self and
broadcast=false and
currentProposal = nil do

trigger <bebBroadcast, currentProposal>;

broadcast := true;

25

Consensus algorithm II

upon event delivered[round] = true or
Proung € SUspected do

iIf round=n and decided=false then
trigger <Decide, currentProposal>
decided=true

else

round := round + 1

26

Consensus algorithm II

propose(0)

pl .
propose(1) \ / dechielt)

p2
deeide(0)
propose(0)
p3

decide(0)

Correctness argument (A)

* Lemma: If a process pJ completes round I
without receiving any message from pI and J
> [, then plI crashes by the end of round J.

. Proof: Suppose pJ completes round I without
receiving message from pI, J > I, and pI completes
round J. Since pJ suspects plI in round I, pI has
crashed before pJ completes round I. In round J]
either pI suspects pJ (not possible because pl
crashes before pl) or pl receives round J message
from pJ (also not possible because pl crashes before

pJ completes round I < J).

28

Correctness argument (B)

* Uniform agreement: Consider the process
with the lowest id which decides, say pl.
Thus, pI completes round n. By our previous
lemma, in round I, every pJ with J > 1
receives the currentProposal of pI and adopts
it. Thus, every process which sends a
message after round I or decides, has the
same currentProposal at the end of round I.

29

Perfect failure detection

® P ensures:

* Strong completeness: eventually every
process that crashes is permanently
suspected by all correct processes

® Strong accuracy: no correct process is
suspected by any process

30

Perfect failure detection

ppm— >

P3

\ suspect P2

31

Perfect failure detection

ppm— >

e T Bl o i AT e T, o

P3

32

Consensus algorithm

¢ Without failure detector?

* System is asynchronous. there is no
information about whether processes are
correct or not

33

Consensus impossibility (FLP)

® Consensus is impossible in an asynchronous
system with at least one crash

34

Eventual failure detection

® <>P ensures:

* Strong completeness: eventually every
process that crashes is permanently
suspected by all correct processes

* Eventual strong accuracy: eventually no
correct process is suspected by any process

35

"<>" makes a difference

* Eventual strong accuracy: strong accuracy
holds only after finite time.

* Correct processes may be falsely suspected a
finite number of times.

® This breaks consensus algorithms I and II
(see next slide)

36

Agreement violated with <>P
in algorithm I

propose(0)
TS SR S S W

R decide(0)

decide(1)
p—_—»

susp'éct pl
propose(1)
p3

4

i

Agreement violated with <>P
in algorithm I1I

propose(0)
!
propose(1) Sus]SGCt p2 susf;ect p3 | decide(0)
p2
decide(1)
propose(1) susgect pl
p3 :

decide(1)

38

Eventual perfect failure detector

®* <>P is an unreliable failure detector: no process p
“knows” at any time, whether another process g
has crashed or not

O e e T IR T T G

susﬁect p2 susﬁect p3

suspect pl

03
e

39

Assume 2 computers can crash

ropose(0)

P
Pl —l—V’ 5

susf;ect p2 susf_;ect p3 decide(0)
propose(1)
e R e e

o

0.: 1 .
SRR decide(1)

P3 propose(1) I

40

Consensus impossibility 2

® Consensus is impossible with an unreliable failure
detector, e.g., <>P, if half of the processes can crash

41

Consensus algorithm III

* A uniform consensus algorithm assuming:
® a correct majority
® a <>P failure detector

® Basic idea: the processes alternate in the
role of a phase coordinator until one of
them succeeds in imposing a decision

42

Consensus algorithm III

* The algorithm is also round-based: processes move
incrementally from one round to the other

* Process pi is leader in every round k such that k
mod n =1

* In such a round, pi tries to decide (next 2 slides)

43

Rotating leadership

propose(0)

P1’s round P2’ s round P3’s round P1’s round etc

Pl

propose(1)

Pz—l——>

propose(0)

I —————

44

When does a leader decide?

*® Pj decides if it is not suspected
(those that suspect Pi inform Pi and move on)

* If Pi decides, Pi broadcasts the decision

45

Consensus algorithm III

® pi succeeds if it is not suspected (processes
that suspect pi inform pi and move to the
next round; pi does so as well)

* If pi succeeds, pi uses a reliable broadcast
to send the decision to all

46

Consensus algorithm III

* To decide, pi executes steps 1-2-3

* 1. pi selects among a majority the latest

adopted value (latest with respect to the round
in which the value is adopted — see step 2)

® 2. pi imposes that value to a majority: any
process in that majority adopts that value —
pi fails if it is suspected

* 3. pi decides and broadcasts the decision

47

Consensus algorithm III

propose(V) pl’ s round p2’ sround p3 sround pl’sround etc
e

propose(1)

P4+

propose(0)

I —————

48

Consensus algorithm III

propose(0)

propose(1)

e e &
s

P2

propose(0)

P3

decide(0)

0]
decid
[0] [0]
[0] decide((
step |1 = step 2 step 3 |

round 1

e(0)

49

Consensus algorithm III

propose(0)

/
Pl —|—_%< crash
propose(1) / Vv

propose(0)

P2

P2

Consensus algorithm III

propose(0)

propose(1)

propose(1)

1" s round p2’ s round p3’ s round

p
T e e e R

pl’ sround etc

Consensus algorithm III

* Why reliable broadcast?

* Why we need to adopt a value from previous
round?

52

DLS-L-CT-LO

® Consensus can be solved with eventual
synchrony and a majority of correct computers

53

Correctness argument A
* Validity and integrity are trivial

* Consider termination: if a correct process
decides, it uses reliable broadcast to send the
decision to all: every correct process decides

* Assume by contradiction that some process is
correct and no correct process decides. We
argue that this is impossible.

54

Correctness argument A’

* By the correct majority assumption and the

completeness property of the failure
detector, no correct process remains blocked

forever in some phase.

* By the accuracy property of the failure
detector, some correct process reaches a
phase where it is leader and it is not
suspected and reaches a decision in that

phase: a contradiction

58

Correctness argument B
* Consider now agreement

* | et k be the first round in which some
brocess pi decides some value v, i.e., piis the
eader of round k and pi decides v in k

* This means that, in round k, a majority of
processes have adopted v

* By the algorithm, no value else than v will be
proposed (and hence decided) by any process
in @ round higher than k

56

new Correctness argument B

round k round k+1
pl >
ack de<:1d V
v &4 (/v =
n
V \\‘? /1r'npose e
w e \
pn W oather >

= leader of that round
57

Agreement is never violated

* | ook at "totally unreliable" failure detector
(provides no guarantees)

*may always suspect everybody
*may never suspect anybody
* Agreement is never violated

*Can use the same correctness argument as
before

*Termination not ensured (everybody may be
suspected infinitely often)

58

Westinghouse 1800

Direct v Reverse air-brake system

59

Summary

* (Uniform) Consensus problem is an important
problem to maintain consistency

® Three algorithms:
« I: consensus using P
o IT: uniform consensus using P

o ITI: uniform consensus using <>P and a
correct majority

60

