
DISTRIBUTED ALGORITHMS 2010/2011

Exercise Session 3
Total Order Broadcast

October 17, 2010

Exercise 1

Would it make sense to add the total-order property to the best-effort broadcast?
The resulting abstraction would not make much sense in a failure-prone environment, as it would

not preclude the following scenario. Assume that a process p broadcasts several messages with best-effort
properties and then crashes.

Some correct processes might end up delivering all those messages (in the same order) whereas other
correct processes might end up not delivering any message.

Exercise 2

What happens in our consensus-based total order broadcast algorithm if the set of messages decided on are not
sorted deterministically after the decision but prior to the proposal? What happens in our consensus-based total
order broadcast algorithm if the set of messages decided on is not sorted deterministically, neither a priori nor a
posteriori?

If the deterministic sorting is done prior to proposing the set for consensus, instead of a posteriori upon
deciding, the processes would not agree on a set but on a sequence of messages. But if they to-deliver the
messages in decided order, the algorithm still ensures the total order property.

If the messages, on which the algorithm agrees in consensus, are never sorted deterministically within
every batch (neither a priori nor a posteriori), then the total order property does not hold. Even if the
processes decide on the same batch of messages, they might to-deliver the messages within this batch
in a different order. In fact, the total order property would be ensured only with respect to batches of
messages, but not with respect to individual messages. We thus get a coarser granularity in the total
order.

We could avoid using the deterministic sort function at the cost of proposing a single message at a
time in the consensus abstraction. This means that we would need exactly as many consensus instances as
there are messages exchanged between the processes. If messages are generated very slowly by processes,
the algorithm ends up using one consensus instance per message anyway. If the messages are generated
rapidly, then it is beneficial to use several messages per instance: within one instance of consensus,
several messages would be gathered, i.e., every message of the consensus algorithm would concern
several messages to to-deliver. Agreeing on large batches with many messages at once is important
for performance in practice, because it considerably reduces the number of times that the consensus
algorithm is invoked.

1/1


