
DISTRIBUTED ALGORITHMS 2010/2011

2008 Exam Solutions

December 3, 2010

Problem 1

1.b If we have a perfect failure detector P, we can build consensus (Algorithm from the slides). Also,
we know that we can implement NBAC using consensus and P. Hence, the answer is yes. If we have
eventually perfect failure detector �P, we cannot build NBAC because we do not have majority of correct
processes guaranteed, and we cannot build consensus from �P.

1.d Algorithm works as follows:

• Every process proposes some value, 1 or 0, and keeps it in a variable called prop.

• On propose, every process bebBroadcasts it’s prop to all.

• When process pi gets a message from process pj with its proposal, via bebDeliver; then pi sets its
propi = propi ∗ propj.

• If propi becomes 0, process i launches UniConsPropose with value 0, if it has not done so yet.

• Also, on every round pi runs checkCrash. If checkCrash returns 1, some process has failed. Then pi
sets propi to 0, and launches UniConsPropose with 0, if it has not done so yet.

• If checkCrash did not return 1, and pi has heard from all processes, and they all proposed 1, then pi
proposes UniCons with 1 at the end.

• On UniConsDecide all processes NBACDecide

Pseudo:

init:
waitingFor = \Pi; cs=true; prop=1; done=false

upon cs=true
if (checkCrash() == 1) then

cs = false
v = 0

endif

upon nbacPropose(v)
prop = v
bebBroadcast(v)

upon bebDeliver(from, v)
waitingFor = waitingFor \ from;
prop = prop * v

1/4

DISTRIBUTED ALGORITHMS 2010/2011
upon (done=false) and ((prop == 0) or(waitingFor == empty))

cs = false
done = true
ucPropose(prop)

upon ucDecide(v)
nbacDecide(v)

Commit validity: A process will only launch UniCons with 1 if all processes including itself have
proposed 1; All other processes will do the same; Therefore, UniCons only has 1’s in it, and by the validity
property of UniCons, it must decide 1, and all processes NBACDecide this result.

Abort Validity: A process will only launch UniCons with 0 if it has 0 as initial value, or it received 0
from another process, or it noted that there was a crash in the system; Then it is possible that UniCons
will decide 0, and only in this case will processes NBACDecide 0.

Agreement: All processes check for a crash in the system at every round, so if there was a crash,
they will all detect it and set their prop to 0, and propose 0 to UniCons. Then by validity property of
UniCons they must all decide 0. If there were no crashed processes, then by the property of perfect
links, all processes eventually bebDeliver all proposals from all processes. If any one process (or more)
proposed 0, then at the end (due to multiplication by zero) all processes will have prop = 0, and will
all UniConsPropose 0. Then, UniCons will decide 0, and all processes will NBACDecide 0. If all processes
proposed 1, then prop = 1, and similarly all processes decide 1.

Termination: Follows from the termination properties of beb and UniCons.

Problem 2

2.a All processes propose their values and broadcast it to other processes. At the end of round 1, each
process adopts the the value proposed by process with the lowest id among the messages received. In
round 2, if there were no crashes in round 1, processes decide those values that they adopted in round 1.
If there was a crash, processes exchange messages again, re-sending their adopted values. Again they
adopt the value received from the process with the lowest id and decide upon this value.

Proof: If there are no crashes, p2 and p3 adopt the proposed value of p1 in round 1. Then in round 2
they all decide it, so consensus properties are satisfied.

If there is one crash, and either p2 or p3 crashes, then it has no effect on algorithm, and processes
decide as in the previous sentence.

If p1 crashes in round 1, it is possible that not all processes got p1’s value. Thus, processes exchange
values again, and both decide in round 2.

2.b Every process keeps a proposal value. In each round, every process first sends the proposal to all.
Then, in the set of received values, the process adopts as its proposal value the value of the process with
the minimal id. Each process decides in the first round after the all-synchronous round, i.e. the round in
which the process did not detect any crash.

2.c Sketch of Proof: Regardless on the number of crashes, there will be some round i at which no
process crashes. The highest value for i in some execution E is f (E) + 1. Thus, all processes will decide
by round f (E) + 2. At round i, the correct remaining processes may have different values stored in their
proposed variable, depending on which processes crashed earlier, and whether some of their messages
were delivered before they crashed. The first all-synchronous round will update all these values such
that all processes will have the same value – the one of the lowest-id remaining process. They will all
decide in round f (E) + 2.

2.d No, this is not possible. The proof is by indistinguishable executions. Execution A: no process
crashes, all receive values from all other processes (in further text, v1, v2, v3).

2/4

DISTRIBUTED ALGORITHMS 2010/2011
Execution B: p1 crashes, p2 receives v1, v2, v3, and p3 receives v2, v3.
For p2 these two executions are indistinguishable, hence p2 may decide on the value v1 from p1. If p2

crashes at the beginning of round 2, p3 may fail to receive value v1, and thus violate uniform agreement.
NB. 2.d does not contradict 2.a, because this proof relies on 2 processes failing, while in 2.a only a

single process fails.

Problem 3

3.b Algorithm

• every process keeps a list of correct processes.

• there is a periodic leader event, at which each process bebBroadcasts 〈leader, pi〉, where pi is the
process with the smallest id from the list of correct processes.

• at crash event, if pj id is returned, current process removes pj from the set of correct processes.
Similarly, if �P removes suspicion on pj, process puts pj back in the list of correct processes.

Due to the properties of �P, eventually the list of correct processes will be the same at all correct nodes,
and will contain all correct processes. Thus, termination will hold, as all processes will trust the same
correct process. Similarly, agreement holds as all processes will stop outputting different leader events,
once all processes have the same list of correct processes (as they choose the leader deterministically
from this list).

3.c The Uniform Consensus in this model is a multi-round algorithm – it runs until the failure detector
becomes perfect (eventually), and a correct process is not suspected by any correct processes, and all the
crashed/omission-faulty processes have been identified.

A process becomes leader based on the Eventual Leader Election: eventually all processes will agree
on a single leader. At every round, the leader will ask the majority of processes if it is suspected by them.
Finally, when Eventual Leader Election succeeds, no correct process will suspect the leader, and once the
majority states it, the leader can decide the previously imposed value, and then impose it on the other
processes, which will decide in the next round.

The following algorithm assumes implementation of pp2p links, using bebBroadcast.

init:
currentleader = nil
sn = 0
qack = empty
iack = empty
v = nil
ucdecided = false

upon event ucPropose(v’)
v = v’

upon event leader(p) and v not nil and not ucdecided
if p not current leader

currentleader = p
if leader = self

sn++;
qack = empty
iack = emtpy

endif
else

3/4

DISTRIBUTED ALGORITHMS 2010/2011
pp2p(QUERY, leader, v, sn)

endif

upon event pp2pDeliver(QUERY, l, v’, sn’)
if (l=self and leader =self)

qack = qack \union (v’,sn’)
if (|qack| >N/2)

(v,sn) = highest(qack) #sorts by sn, then by v
bebBroadcast(IMPOSE, v, sn)

endif
endif

upon event bebDeliver(IMPOSE, v’, sn’)
if ((sn’,v’) >= (sn, v))

sn = sn’
v = v’
pp2p(IMPOSE, leader, v, sn)

endif

upon event p2pDeliver(IMPOSE, l, v’, sn’)
if (leader = l = self and sn’ = sn and v’ = v)

iack = iack \union (v’,sn’)
if (|iack| > N/2)

ucDecide(v)
ucdecided = true
bebBroadcast(DECIDE, v)

endif
endif

upon event bebDeliver(DECIDE, v’) and ucdecided = false
v = v’
sn = \inf
ucDecide(v)
ucdecided = true
bebBroadcast(DECIDE, v)

3.d We can implement TOB using UniCons. Each process toBroadcasts messages using bebBroadcast. Each
process keeps an internal queue of unordered, non-delivered messages.

When a process pi bebDelivers a message, it puts the message into the internal list. When the internal
list is not empty, the process pi launches ucPropose with the list. When a process ucDecides, it receives a
decided list, decidedu. Then pi removes all messages from its unordered list, which are in decidedu. Finally,
pi deterministically sorts decidedu and pi delivers messages from that list. While delivering messages, pi
skips delivery if a message exists in its delivered list. Every toDeliver-ed message is added to the delivered
list.

4/4

