
1 © R. Guerraoui

Distributed algorithms

Prof R. Guerraoui
lpd.epfl.ch

Assistants: Nikola Knezevic, Mihai Letia

Exam: Written
Reference: Book - Springer Verlag -

 - Introduction to Reliable (and Secure) Distributed Programming -

2

In short
!   We study algorithms for distributed systems: a new

way of thinking about algorithms

!   Whereas a centralized algorithm is the soul of a
computer, a distributed algorithm is the soul of a
society of computers

3

Distributed algorithms (history)
!  E. Dijkstra (concurrent os)~60’s
!  L. Lamport: ‘‘a distributed system is one that stops

your application because a machine you never heard
from crashed’’ ~70’s

!  J. Gray (transactions) ~70’s
!  N. Lynch (consensus) ~80’s
!  Birman, Schneider, Toueg – Cornell –

(broadcast) ~90’s

4

Important

•  This course is complementary to the course
Concurrent algorithms

•  We study here message passing based
algorithms whereas the other course focuses
on shared memory based algorithms

5

Overview
!  (1) Why? Motivation

!   (2) Where? Between the network and the
application

!   (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

6

A distributed system

A

B

C

7

Clients-server

Client B

Client A

Server

8

Multiple servers
(genuine distribution)

Server A

Server B

Server C

9

The optimistic view

!  Concurrency => speed (load-balancing)

!  Partial failures => high-availability

10

The pessimistic view

  Concurrency (interleaving) => incorrectness

  Partial failures => incorrectness

11

Overview
!   (1) Why? Motivation

!  (2) Where? Between the network and
the application

!   (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

12

Distributed systems

13

Distributed systems
!  The application needs underlying

services for distributed interaction

!  The network is not enough

!  Reliability guarantees (e.g., TCP) are
only offered for communication
among pairs of processes, i.e., one-
to-one communication (client-server)

14

Reliable broadcast
Causal order broadcast

Shared memory
Consensus

Total order broadcast
Atomic commit
Leader election

Terminating reliable broadcast

Content of this course

15

Reliable distributed services

!  Example 1: reliable broadcast

!  Ensure that a message sent to a
group of processes is received
(delivered) by all or none

!  Example 2: atomic commit

!  Ensure that the processes reach a
common decision on whether to
commit or abort a transaction

16

Underlying services

!   (1): processes (abstracting computers)

!   (2): channels (abstracting networks)

!   (3): failure detectors (abstracting time)

17

Processes

  The distributed system is made of a finite
set of processes: each process models a
sequential program

  Processes are denoted p1,..pN or p, q, r
  Processes have unique identities and know

each other

  Every pair of processes is connected by a
link through which the processes exchange
messages

18

Processes

!   A process executes a step at every tick of its
local clock: a step consists of

!  A local computation (local event) or a
global computation, i.e., send/receive a
message to/from another process

!   NB. One message is delivered from/sent to a
process per step

19

Processes
!   The program of a process is made of a finite

set of modules (or components) organized as
a software stack

!   Modules within the same process interact by
exchanging events

!   upon event < Event1, att1, att2,..> do

!   // something

!   trigger < Event2, att1, att2,..>

20

Modules of a process

request (deliver)

indication

request (deliver)

indication

request (deliver)

indication

21

Overview

!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

22

Approach

!  Specifications: What is the service?
i.e., the problem ~ liveness + safety

!  Assumptions: What is the model, i.e.,
the power of the adversary?

!  Algorithms: How do we implement the
service? Where are the bugs (proof)?
What cost?

23

Overview
!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

24

Liveness and safety
!  Safety is a property which states that

nothing bad should happen
!  Liveness is a property which states

that something good should happen
!  Any specification can be expressed in

terms of liveness and safety
properties (Lamport and Schneider)

25

Liveness and safety

!  Example: Tell the truth

!  Having to say something is liveness

!  Not lying is safety

26

Specifications
!  Example 1: reliable broadcast

!  Ensure that a message sent to a
group of processes is received by all
or none

!  Example 2: atomic commit

!  Ensure that the processes reach a
common decision on whether to
commit or abort a transaction

27

Overview
!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

28

Overview
!   (1) Why? Motivation
!   (2) Where? Between the network and the

application
!  (3) How? (3.1) Specifications, (3.2)

assumptions, and (3.3) algorithms
!   3.2.1 Assumptions on processes and

channels
!   3.2.2 Failure detection

29

Processes

  A process either executes the algorithm assigned
to it (steps) or fails

  Two kinds of failures are mainly considered:

 Omissions: the process omits to send
messages it is supposed to send

 Arbitrary: the process sends messages it is
not supposed to send (malicious or Byzantine)

30

Processes
!  Crash-stop: a more specific case of

omissions
!  A process that omits a message to a

process, omits all subsequent
messages to all processes: it crashes

31

Processes
!   By default, we assume a crash-stop model

throughout this course; that is, unless
specified otherwise: processes fail only by
crashing (no recovery)

!   A correct process does not fail (does not
crash)

32

Processes communicate by message passing
through communication channels

Messages are uniquely identified and the message
identifier includes the sender’s identifier

Processes/Channels

33

Fair-loss links

!   FL1. Fair-loss: If a message is sent infinitely
often by pi to pj , and both are correct, then m
is delivered infinitely often by pj

!   FL2. Finite duplication: If a message is sent
a finite number of times by pi to pj, it is
delivered a finite number of times by pj

!  FL3. No creation: No message is delivered
unless it was sent

34

Stubborn links

!   SL1. Stubborn delivery: if a process pi
sends a message m to a correct process pj,
and pi does not crash, then pj delivers m
an infinite number of times

!  SL2. No creation: No message is
delivered unless it was sent

35

Algorithm (sl)
!   Implements: StubbornLinks (sp2p).

!   Uses: FairLossLinks (flp2p).

!   upon event < sp2pSend, dest, m> do

!   while (true) do

!   trigger < flp2pSend, dest, m>;

!   upon event < flp2pDeliver, src, m> do

!   trigger < sp2pDeliver, src, m>;

36

Reliable (Perfect) links
!   Properties

!   PL1. Validity: If pi and pj are correct,
then every message sent by pi to pj is
eventually delivered by pj

!   PL2. No duplication: No message is
delivered (to a process) more than once

!   PL3. No creation: No message is
delivered unless it was sent

37

Algorithm (pl)
!   Implements: PerfectLinks (pp2p).

!   Uses: StubbornLinks (sp2p).

!   upon event < Init> do delivered := empy;

!   upon event < pp2pSend, dest, m> do

!   trigger < sp2pSend, dest, m>;

!   upon event < sp2pDeliver, src, m> do

!   if m ∉ delivered then

!   trigger < pp2pDeliver, src, m>;

!   add m to delivered;

38

Reliable links

!   We assume reliable links (also called perfect)
throughout this course (unless specified
otherwise)

!   Roughly speaking, reliable links ensure that
messages exchanged between correct processes
are not lost

39

Overview
!   (1) Why? Motivation
!   (2) Where? Between the network and the

application
!  (3) How? (3.1) Specifications, (3.2)

assumptions, and (3.3) algorithms
!   3.2.1 Processes and links
!   3.2.2 Failure detection

40

Failure detection
!   A failure detector is a distributed oracle

that provides processes with information
about crashed processes

!   It is implemented using (i.e., it encapsulates)
timing assumptions

!   According to the timing assumptions, the
information can be accurate or not

41

Failure detection
!   A failure detector module is defined by events

and properties

!   Events

!   Indication: <crash, p>

!   Properties:

!   Completeness

!   Accuracy

42

Failure detection
Perfect:
!   Strong Completeness: Eventually, every process that

crashes is permanently suspected by every correct
process

!   Strong Accuracy: No process is suspected before it
crashes

Eventually Perfect:
!   Strong Completeness
!   Eventual Strong Accuracy: Eventually, no correct

process is ever suspected

43

Failure detection
Implementation:

!   (1) Processes periodically exchange heartbeat
messages

!   (2) A process sets a timeout based on worst case
round trip of a message exchange

!   (3) A process suspects another process if it
timeouts that process

!   (4) A process that delivers a message from a
suspected process revises its suspicion and
increases its time-out

44

Timing assumptions
Synchronous:
!   Processing: the time it takes for a process to execute

a step is bounded and known
!   Delays: there is a known upper bound limit on the

time it takes for a message to be received
!   Clocks: the drift between a local clock and the global

real time clock is bounded and known
Eventually Synchronous: the timing

assumptions hold eventually
Asynchronous: no assumption

45

Overview
!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

46

Algorithms
modules of a process

request (deliver)

indication

request (deliver)

indication

request (deliver)

indication

47

Algorithms

p1

p2

p3

m1

m2

m3

48

Algorithms

p1

p2

p3

m1

m2

crash

49

The rest; for every abstraction

!   (A) We assume a crash-stop system with
a perfect failure detector (fail-stop)
!   We give algorithms

!   (B) We try to make a weaker assumption
!   We revisit the algorithms

