Distributed Systems
Non-Blocking Atomic Commit

Prof R. Guerraoui
Distributed Programming Laboratory

Non-Blocking Atomic Commit:
An Agreement Problem

A 0-1 g<° \\C:Z//
=T
@

\

B
C

Transactions (Gray)

e A transaction is an atomic program
describing a sequence of accesses to
shared and distributed information

e A transaction can be terminated either
by committing or aborting

Transactions

“beginTransaction
» Pierre.credit(1.000.000)
» Paul.debit(1.000.000)

outcome := commitTransaction
- if (outcome = abort) than ...

ACID properties

Atomicity: a transaction either performs entirely or none at all

Consistency: a transaction transforms a consistent state into
another consistent state

Isolation: a transaction appears to be executed 1n 1solation

Durability: the effects of a transaction that commits are
permanent

The Consistency Contract

(system)
Atomicity (programmer)
Isolation Consistency (local)
Durability

=

Consistency (global)

Distributed Transaction

bort commit l ?
? /)ort -commit
bort -commi t
“\Wg Q

Non-Blocking Atomic Commit

As in consensus, every process has an initial
value 0 (no) or 1 (yes) and must decide on a
final value 0 (abort) or 1 (commit)

The proposition means the ability to commit the
transaction

The decision reflects the contract with the user

Unlike consensus, the processes here seek to
decide 1 but every process has a veto right

Non-Blocking Atomic Commit

NBAC1. Agreement. No two processes decide differently
NBAC2. Termination: Every correct process eventually decides

NBAC3. Commit-Validity: 1 can only be decided if all processes
propose 1

NBAC4. Abort-Validity: 0 can only be decided if some process
crashes or votes 0

Non-Blocking Atomic Commit

propose(0) decide(0)

pl ——————————————>

propose(1) decide(0)

s

propose(0) decide(0)
2 4|—|—>

10

Non-Blocking Atomic Commit

propose(l) decide(0-1)

p1—|—|—>

propose(1)

p3 pmpo‘ e decide(0-1)

11

propose(1)

pl
propose(1)

p2

propose(1)
p3

2-Phase Commit

/)

decide(1)

decide(1)

decide(1)

12

pl

p2

p3

propose(1)

propose(1)

propose(1)

2-Phase Commit

decide(0)

crash

d

1de(0)

13

2-Phase Commit

propose(1)
crash

pl
propose(1

p2

propose(1)
p3 _|—>

14

Non-Blocking Atomic Commit

Events
Request: <Propose, v>
Indication: <Decide, v'>
o Properties:
e NBAC1, NBAC2, NBAC3, NBAC4

15

Algorithm (nbac)

Implements: nonBlockingAtomicCommit (nbac).
Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).
UniformConsensus (uniCons).
upon event < Init > do
prop := 1;
delivered := O&; correct := II;

Algorithm (nbac — cont'd)

upon event < crash, pi > do

correct := correct \ {pi}

upon event < Propose, v > do

trigger < bebBroadcast, v>;

upon event <bebDeliver, pi, v> do

delivered := delivered U {pi};

prop :=

rop * v;

1

Algorithm (nbac — cont'd)

upon event correct \ delivered = empty do
if correct = I1
prop := 0;
trigger < uncPropose, prop>;

upon event < uncDecide, decision> do
trigger < Decide, decision>;

18

nbac with ucons

propose(1) decide(1)
nepe—a— - I . .
decide(1)
UCons(1,1)
propose(decide(1)

3
P %UCOHS(I,DH—»

19

nbac with ucons

propose(1)
pl H
crash
propose(1) decide(0)
p? UCons(0,0)
propose(1) decide(0)

p3 %UCOM(O,O)H_»

20

nbac with ucons

propose(1)

X

ash

decide(0-1)

Cons(0,0-1)

propose(1) decide(0-1)

3
e NN .

21

Non-Blocking Atomic Commit

e Do we need the perfect failure detector P?

e 1. We show that <>P is not enough

e 2. We show that P is needed if one process can

crash

e NB. Read DFGHTKO4 for the general case

22

Non-Blocking Atomic Commit

e Do we need the perfect failure detector P?

e 1. We show that <>P is not enough

e 2. We show that P is needed if one process
can crash

23

1. Run 1

propose(0)
pl —H
crash decide
(0)
propose(1)
L &
decide
propose(1) (0)

p3‘ ‘

24

1. Run 2

propose(1)
pl —H
crash decide
B (0)
ropose
decide
propose(1) (0)

p3‘ ‘

25

1. Run 3
propose(1) 5 <>P becomes P
S e
decide
‘ (1) (O)‘
ropose i
o prop
decide
propose(1) (0)

p3‘ ‘

26

Non-Blocking Atomic Commit

Do we need the perfect failure detector P?

e 1. We show that <>P is not enough

o 2. We show that P is needed if one process can
crash

2L

2. P is needed with one crash

pl =—{NBAC(1,1)

NBAC(1,0)

p2 —INBAC(L,1)

Sr\ysh

p3

suspect
(p2)

suspect
(p2)

——NBAC(1,1)—————NBAC(1,0)

|.

28

