
1

© R. Guerraoui

Regular register algorithms

R. Guerraoui

Distributed Programming Laboratory
 lpdwww.epfl.ch

2

Overview of this lecture
!   (1) Overview of a register algorithm
!   (2) A bogus algorithm
!   (3) A simplistic algorithm
!   (4) A simple fail-stop algorithm
!   (5) A tight asynchronous lower bound
!   (6) A fail-silent algorithm

3

A distributed system

P1

P2

P3

4

Shared memory model

Registers

P1 P3

P3

5

Message passing model

A

B

C

6

Implementing a register

§  From message passing to shared memory

§  Implementing the register comes down to
implementing Read() and Write() operations at
every process

7

Implementing a register

§  Before returning a Read() value, the process
must communicate with other processes

§  Before performing a Write(), i.e., returning the
corresponding ok, the process must communicate
with other processes

8

Overview of this lecture
!   (1) Overview of a register algorithm
!   (2) A bogus algorithm
!   (3) A simplistic algorithm
!   (4) A simple fail-stop algorithm
!   (5) A tight asynchronous lower bound
!   (6) A fail-silent algorithm

9

A bogus algorithm

§  We assume that channels are reliable (perfect
point to point links)

§  Every process pi holds a copy of the register
value vi

10

A bogus algorithm

§  Read() at pi
ü Return vi

§  Write(v) at pi
ü  vi := v
ü Return ok

§  The resulting register is
live but not safe:
ü Even in a sequential and

failure-free execution, a
Read() by pj might not
return the last written value,
say by pi

11

P2

P1

W(5) W(6)

R1() -> 0 R2() -> 0 R3() -> 0

No safety

12

Overview of this lecture
!   (1) Overview of a register algorithm
!   (2) A bogus algorithm
!   (3) A simplistic algorithm
!   (4) A simple fail-stop algorithm
!   (5) A tight asynchronous lower bound
!   (6) A fail-silent algorithm

13

A simplistic algorithm

§  We still assume that channels are reliable but
now we also assume that no process fails

§  Basic idea: one process, say p1, holds the value
of the register

14

A simplistic algorithm

§  Read() at pi
ü  send [R] to p1
ü  when receive [v]
ü Return v

§  Write(v) at pi
ü  send [W,v] to p1
ü  when receive [ok]
ü Return ok

§  At p1:
T1:
 when receive [R] from pi

 send [v1] to pi
T2:
 when receive [W,v] from pi

 v1 := v
 send [ok] to pi

15

Correctness (liveness)

§  By the assumption that
ü  (a) no process fails,
ü  (b) channels are reliable

no wait statement blocks forever, and hence
every invocation eventually terminates

16

Correctness (safety)

!   (a) If there is no concurrent or failed operation, a Read()
returns the last value written

!   (b) A Read() must return some value written

!   NB. If a Read() returns a value written by a given Write(),

and another Read() that starts later returns a value written
by a different Write(), then the second Write() cannot
start after the first Write() terminates

17

Correctness (safety – 1)

!   (a) If there is no concurrent or failed operation, a
Read() returns the last value written
!  Assume a Write(x) terminates and no other Write() is

invoked. The value of the register is hence x at p1. Any
subsequent Read() invocation by some process pj
returns the value of p1, i.e., x, which is the last written
value

18

Correctness (safety – 2)

!   (b) A Read() returns the previous value written or
the value concurrently written
!  Let x be the value returned by a Read(): by the

properties of the channels, x is the value of the register
at p1. This value does necessarily come from a
concurrent or from the last Write().

19

What if?

§  Processes might crash?

§  If p1 crashes, then the register is not live (wait-
free)

§  If p1 is always up, then the register is regular and
wait-free

20

Overview of this lecture
!   (1) Overview of a register algorithm
!   (2) A bogus algorithm
!   (3) A simplistic algorithm
!   (4) A simple fail-stop algorithm
!   (5) A tight asynchronous lower bound
!   (6) A fail-silent algorithm

21

A fail-stop algorithm
!   We assume a fail-stop model; more

precisely:
!   any number of processes can fail by

crashing (no recovery)
!   channels are reliable
!   failure detection is perfect (we have a

perfect failure detector)

22

!   We implement a regular register
!  every process pi has a local copy of the

register value vi
!   every process reads locally
!   the writer writes globally, i.e., at all (non-

crashed) processes

A fail-stop algorithm

23

A fail-stop algorithm
!   Write(v) at pi

!   send [W,v] to all
!   for every pj, wait

until either:
!   receive [ack] or
!   suspect [pj]

!   Return ok

!   At pi:
 when receive [W,v]

from pj
 vi := v
 send [ack] to pj

!   Read() at pi

!   Return vi

24

Correctness (liveness)
ü A Read() is local and eventually returns

ü A Write() eventually returns, by the
!   (a) the strong completeness property

of the failure detector, and
!   (b) the reliability of the channels

25

Correctness (safety – 1)
!   (a) In the absence of concurrent or

failed operation, a Read() returns the
last value written
!   Assume a Write(x) terminates and no other Write

() is invoked. By the accuracy property of the
failure detector, the value of the register at all
processes that did not crash is x. Any subsequent
Read() invocation by some process pj returns the
value of pj, i.e., x, which is the last written value

26

Correctness (safety – 2)
!   (b) A Read() returns the value

concurrently written or the last value
written
!   Let x be the value returned by a Read(): by

the properties of the channels, x is the
value of the register at some process. This
value does necessarily come from the last
or a concurrent Write().

27

What if?
!  Failure detection is not perfect

!  Can we devise an algorithm that
implements a regular register and
tolerates an arbitrary number of crash
failures?

28

Overview of this lecture
!   (1) Overview of a register algorithm
!   (2) A bogus algorithm
!   (3) A simplistic algorithm
!   (4) A simple fail-stop algorithm
!   (5) A tight asynchronous lower bound
!   (6) A fail-silent algorithm

29

Lower bound

§  Proposition: any wait-free asynchronous
implementation of a regular register requires a
majority of correct processes

§  Proof (sketch): assume a Write(v) is performed and n/2
processes crash, then a Read() is performed and the
other n/2 processes are up: the Read() cannot see the
value v

§  The impossibility holds even with a 1-1 register (one writer
and one reader)

30

The majority algorithm [ABD95]

§  We assume that p1 is the writer and any process
can be reader

§  We assume that a majority of the processes is
correct (the rest can fail by crashing – no
recovery)

§  We assume that channels are reliable
§  Every process pi maintains a local copy of the

register vi, as well as a sequence number sni and
a read timestamp rsi

§  Process p1 maintains in addition a timestamp ts1

31

Algorithm - Write()

§  Write(v) at p1
ü  ts1++
ü  send [W,ts1,v] to all
ü  when receive

[W,ts1,ack] from
majority

ü Return ok

§  At pi
ü when receive [W,ts1, v]

from p1
ü If ts1 > sni then

●  vi := v
●  sni := ts1
●  send [W,ts1,ack] to

p1

32

Algorithm - Read()

§  Read() at pi
ü rsi++
ü send [R,rsi] to all
ü  when receive [R,

rsi,snj,vj] from majority
ü v := vj with the largest

snj
ü Return v

§  At pi
ü when receive [R,rsj]

from pj
ü  send [R,rsj,sni,vi] to pj

33

What if?
!  Any process that receives a write

message (with a timestamp and a
value) updates its value and sequence
number, i.e., without checking if it
actually has an older sequence number

34

P1
W(5) W(6)

P2

 sn1 = 1; v1 = 5

Old writes

P3

 sn2 = 1; v2 = 5

 sn3 = 2; v3 = 6 sn3 = 1; v3 = 5

R() -> 5

 sn1 = 2; v1 = 6

35

Correctness 1
ü Liveness: Any Read() or Write() eventually

returns by the assumption of a majority of
correct processes (if a process has a newer
timestamp and does not send [W,ts1,ack],
then the older Write() has already returned)

ü Safety 2: By the properties of the channels,
any value read is the last value written or the
value concurrently written

36

Correctness 2 (safety – 1)
!   (a) In the absence of concurrent or

failed operation, a Read() returns the
last value written
!   Assume a Write(x) terminates and no other Write

() is invoked. A majority of the processes have x in
their local value, and this is associated with the
highest timestamp in the system. Any subsequent
Read() invocation by some process pj returns x,
which is the last written value

37

What if?
!  Multiple processes can write

concurrently?

38

P1
W(5) W(6)

P2

 ts1 = 1

Concurrent writes

P3

R() -> 6

 ts1 = 2

W(1)

 ts3 = 1

39

Overview of this lecture
!   (1) Overview of a register algorithm
!   (2) A bogus algorithm
!   (3) A simplistic algorithm
!   (4) A simple fail-stop algorithm
!   (5) A tight asynchronous lower bound
!   (6) A fail-silent algorithm

