
1

© R. Guerraoui

Atomic register
algorithms

R. Guerraoui

Distributed Programming Laboratory
 lpdwww.epfl.ch

2

Overview of this lecture

!   (1) From regular to atomic
!   (2) A 1-1 atomic fail-stop algorithm
!   (3) A 1-N atomic fail-stop algorithm
!   (4) A N-N atomic fail-stop algorithm
!   (5) From fail-stop to fail-silent

3

Fail-stop algorithms
!   We first assume a fail-stop model; more

precisely:
!   any number of processes can fail by

crashing (no recovery)
!   channels are reliable
!   failure detection is perfect

4

The simple algorithm
!   Consider our fail-stop regular register

algorithm
!  every process has a local copy of the

register value
!   every process reads locally
!   the writer writes globally, i.e., at all (non-

crashed) processes

5

The simple algorithm
!   Write(v) at pi

!   send [W,v] to all
!   for every pj, wait

until either:
!   received [ack] or
!   suspected [pj]

!   Return ok

!   At pi:
 when receive [W,v]

from pj
 vi := v
 send [ack] to pj

!   Read() at pi

!   Return vi

6

Atomicity?

P1

P2
W(5) W(6)

R1() -> 5 R2() -> 6

 v1 = 5 v1 = 6

P3
R3() -> 5

 v3 = 5

7

Linearization?

P1

P2
W(5) W(6)

R1() -> 5 R2() -> 6

P3
R3() -> 5 ??

8

Fixing the pb: read-globally

!   Read() at pi
!   send [W,vi] to all
!   for every pj, wait until either:

!   receive [ack] or
!   suspect [pj]

!   Return vi

9

Still a problem

P1

P2
W(5) W(6)

R() -> 5

P3
R() -> 5

10

Linearization?

P1

P2
W(5) W(6)

R1() -> 5

P3
R3() -> 5 ??

11

Overview of this lecture

!   (1) From regular to atomic
!   (2) A 1-1 atomic fail-stop algorithm
!   (3) A 1-N atomic fail-stop algorithm
!   (4) A N-N atomic fail-stop algorithm
!   (5) From fail-stop to fail-silent

12

A fail-stop 1-1 atomic
algorithm

!   Write(v) at p1
!   send [W,v] to p2
!   Wait until either:

!   receive [ack]
from p2 or

!   suspect [p2]
!   Return ok

!   At p2:
 when receive [W,v]

from p1
 v2 := v
 send [ack] to p2

!   Read() at p2

!   Return v2

13

!  every process maintains a local value of

the register as well as a sequence number

!   the writer, p1, maintains, in addition a

timestamp ts1

!   any process can read in the register

A fail-stop 1-N algorithm

14

!   Write(v) at p1
!   ts1++
!   send [W,ts1,v] to all
!   for every pi, wait

until either:
!   receive [ack] or
!   suspect [pi]

!   Return ok

!   Read() at pi
!   send [W,sni,vi] to all
!   for every pj, wait

until either:
!   receive [ack] or
!   suspect [pj]

!   Return vi

A fail-stop 1-N algorithm

15

A 1-N algorithm (cont’d)

!   At pi
!   When pi receive [W,ts,v] from pj

 if ts > sni then
 vi := v
 sni := ts
 send [ack] to pj

16

Why not N-N?

P1

P2
W(X)

W(Z)

R() -> Y

P3

W(Y)

17

The Write() algorithm

§  Write(v) at pi
ü  send [W] to all
ü  for every pj wait until

●  receive [W,snj] or
●  suspect pj

ü  (sn,id) := (highest snj + 1,i)
ü  send [W,(sn,id),v] to all
ü  for every pj wait until

●  receive [W,(sn,id),ack] or
●  suspect pj

ü Return ok

§  At pi

T1:
ü when receive [W] from pj

●  send [W,sn] to pj

T2:
ü when receive [W,(snj,idj),v]

from pj
ü  If (snj,idj) > (sn,id) then

●  vi := v
●  (sn,id) := (snj,idj)

ü  send [W,(snj,idj),ack] to pj

18

The Read() algorithm

§  Read() at pi
ü  send [R] to all
ü  for every pj wait until

●  receive [R,(snj,idj),vj] or
●  suspect pj

ü  v = vj with the highest (snj,idj)
ü  (sn,id) = highest (snj,idj)
ü  send [W,(sn,id),v] to all
ü  for every pj wait until

●  receive [W,(sn,id),ack] or
●  suspect pj

ü Return v

§  At pi

T1:
ü when receive [R] from pj

●  send [R,(sn,id),vi] to pj

T2:
ü when receive [W,(snj,idj),v]

from pj
ü  If (snj,idj) > (sn,id) then

●  vi := v
●  (sn,id) := (snj,idj)

ü  send [W,(snj,idj),ack] to pj

19

Overview of this lecture

!   (1) From regular to atomic
!   (2) A 1-1 atomic fail-stop algorithm
!   (3) A 1-N atomic fail-stop algorithm
!   (4) A N-N atomic fail-stop algorithm
!   (5) From fail-stop to fail-silent

20

From fail-stop to fail-silent

§  We assume a majority of correct processes

§  In the 1-N algorithm, the writer writes in a majority
using a timestamp determined locally and the
reader selects a value from a majority and then
imposes this value on a majority

§  In the N-N algorithm, the writers determines first
the timestamp using a majority

