
Exercise Session 8
View Synchronous Communication

November 26, 2012

Problem 1

In this problem we will change the view-synchronous communication (VSC) abstraction in order to allow
joins of new processes. Answer to the following questions:

1. Are the properties of VSC (as given in the class) suitable to accommodate the joins of new pro-
cesses. Why / Why not? (Hint: no)

2. Change the properties of VSC, so that they allow for implementations that support the joins of
new processes. (Hint: focus on the properties of group membership)

3. Sketch the changes we need to perform on the Consensus-based (Algorithm II) implementation
of VSC in order to support joins.

Solution

Solution 1.1

No, the properties are not suitable for joins. The most obvious property is Local Monotonicity. Joins
imply that the set of correct processes in a view can increase, and this would break the local monotonic-
ity property. Furthermore, Completeness and Accuracy only refer to crashes, without imposing any
conditions on the correctness of joins.

Solution 1.2

First, we need to add a 〈Join|p〉 event to allow new processes to join the group. After a process emits
such an event, we says that it requested to join. The VSC layer emits a 〈JoinOk〉 event to the application
when it has successfully joined a view. The application can start emitting broadcast requests after it
receives the JoinOk event.

Group membership properties

Let us first look at the four group membership properties.
View Monotonicity. The monotonicity property of VSC (GM1) ensures that the number of processes

in a view decreases over time. Since new processes can join, this need change: Three possibilities can
be considered:

• Get rid of it entirely.

• Require that views do not change for nothing: If a process installs views (j,N) and (j + 1,M),
then M 6= N .

• Require that views do not oscillate: if a process p installs views (i,M) and (j,N) where j > i,
q ∈M , and q 6∈ N , then for all k > j, if p installs (j,O), then p 6∈ O.

1



With the second option, the new property ensures that consecutive views have different sets of pro-
cesses, i.e., that the view cannot change if there is no change in the correct set of processes. Notice,
however, that it is still possible for two views to have the same set of processes, e.g., if a processes joins
and then crashes. It is also possible for a process to repeatedly be included and excluded from a view.

With the third option, once a process is excluded from a view it can never come back.
Uniform agreement. The uniform agreement property of VSC (GM2) ensures that all processes

install the same sequence of view. We will keep this property.
Completeness. If we choose the third version of monotonicity, then we can keep the completeness

property of the group membership abstraction. If we choose one of the first two, we need to make
some changes: Because the sequence of views is no longer monotonic, we need to strengthen a bit the
completeness property of VSC (GM3): If a process p crashes, then there is i ∈ N such that for all correct
process q, if j > i and q installs view (j,M), then p 6∈M .

To ensure that processes which want to join eventually join a view, we add the following complete-
ness property: If a correct process p requests to join, then there is an integer i such that every correct
process eventually installs view (i,M) such that p ∈M .

Accuracy. If a process p installs views (i,M) and (i + 1, N) where q ∈ M but q 6∈ N , then q has
crashed.

On top of those properties, we will also require that a process is included in a view only if it re-
quested so.

Validity. If some process installs a view (i,M) and some process q is in M , then q previously re-
quested to join or q ∈ Π.

Broadcast properties

Let us now look at the broadcast properties of VSC. Those are the same of for reliable broadcast
(RB1,2,3,4). We need to decide whether a process which joins need to “catch-up” on all previously
delivered messages or can just start with the messages of the first view in which it is included.

If we choose the first then we need to relax Agreement (RB4) so that a process need to deliver only
the messages sent in the view to which it participates: If message m is delivered by some correct process
in view (i,M), then m is eventually delivered by all the process belonging to M . This way, if p 6∈ M
then p does not have to deliver m.

If we choose the first solution then we can leave RB1,2,3,4 unchanged.

View Inclusion

Finally, we will keep the View Inclusion property as is.

Solution 1.3

The solution is described in Algorithm 1, 2. The changes to the regular algorithm are highlighted in
red (note that we used the consensus algorithm that appears in the book — it is similar in spirit to the
version in the slides).

We add two new local variables to the algorithm: joined and crashed. The joined variable is a
boolean flag that is set to true after the process successfully joins a view (is part of the view members).
The joined flag differentiates the behavior of processes that are just attempting to join. The crashed
variable is a local set that keeps track of crash events received from the failure detector. This set is
useful in executions where a process p attempts to join and then crashes. If another correct process p2
sees the join attempt only after the crash notification, it needs to remember that it has already seen a
crash of p and to disregard the join.

For most events, the only difference to the original algorithm is that we impose the condition
joined = true for event handlers. Recall that such a conditional event handler means that the events
are implicitly buffered until the condition becomes true (see the Additional Material on the website).
For example, the crash handler is now conditioned by joined = true. This means that any crash event
received by the process while it is still joining will be buffered. The events will, however, be handled
right after the process successfully joins a view.

2



The joining begins when the application emits a Join event (line 21). If the process has not joined
yet and is not part of the initial set of processes in the view, the process broadcasts a JoinReq message
to every other process. The JoinReq message can be seen as a dual of the crash event. It will be the job
of the receiving correct processes (that are already view members) to handle the join and propose the
addition of the joining process to a view.

Upon receiving a JoinReq message (line 23), processes will add the joining process to their correct
set. Note that if the receiving process has already seen a crash of the joining process, the correct set will
not be changed ({p} \ crashed will be ∅). Changing the correct set will trigger the handler at line 37 and
initiate a view change. Processes that have seen the broadcast from the joining process will propose it
in the new view member set. Since the joining process uses best-effort broadcast, correct processes will
eventually receive the JoinReq broadcast message (if the joining process is also correct).

Another difference with the initial algorithm is that once a decision is taken in the consensus and
a process moves to a new view, every process broadcasts the new view (both its member set and id).
This broadcast is useful for joining processes. If a joining process sees that it is part of a new view, it
will initialize its view id, member set and correct set accordingly. Finally, the joining process sets the
joined flag to true (meaning that it will handle all buffered events) and emits a JoinOk indication to the
application.

3



Algorithm 1 View synchrony with joins, first part
1: Implements:
2: VSCJ (vscj)

3: Uses:
4: UniformConsensus (ucons)
5: BestEffortBroadcast (beb)
6: PerfectFailureDetector (P )

7: upon event 〈vscj, Init〉 do
8: (vid,M) := (0,Π)
9: correct := Π

10: flushing := false; blocked := false;wait := false;
11: pending := ∅; delivered := ∅; crashed := ∅
12: forall m do ack[m] := ∅
13: seen := [⊥]N

14: trigger 〈vscj, V iew | (vid,M)〉
15: if self ∈ Π then
16: joined := true
17: else
18: joined := false
19: end if

20: upon event 〈vscj, Broadcast | m〉 such that blocked = false∧joined = true do
21: pending := pending ∪ (self,m)
22: trigger 〈beb,Broadcast | [DATA, vid, self,m]〉

23: upon event 〈vscj,Deliver | p, [DATA, id, s,m]〉 such that joined = true do
24: if id = vid ∧ blocked = false then
25: ack[m] := ack[m] ∪ {p}
26: if (s,m) 6∈ pending then
27: pending := pending ∪ (s,m)
28: trigger 〈beb,Broadcast | [DATA, vid, s,m]〉
29: end if
30: end if

31: upon ∃(s,m) ∈ pending : M ⊆ ack[m] ∧m 6∈ delivered∧joined = true do
32: delivered := delivered ∪ {m}
33: trigger 〈vscj,Deliver | s,m〉

34: upon event 〈P,Crash | p〉 such that joined = true do
35: correct := correct \ {p}
36: crashed := crashed ∪ {p}

37: upon correct 6= M ∧ flushing = false∧joined = true do
38: flushing := true
39: trigger 〈vscj, Block〉

40: upon event 〈vscj, BlockOk〉 such that joined = true do
41: blocked := true
42: trigger 〈beb,Broadcast | [PENDING, vid, pending]〉

43: upon event 〈beb,Deliver | p, [PENDING, id, pd]〉 such that id = vid∧joined = true do
44: seen[p] := pd

45: upon ∀p ∈ correct : seen[p] 6= ⊥ ∧ wait = false do
46: wait := true
47: vid := vid + 1
48: initialize a new instance uc.vid of uniform consensus
49: trigger 〈uc.vid, Propose | (correct, seen)〉

4



Algorithm 2 View synchrony with joins, second part
1: upon event 〈uc.id,Decide |M ′, S〉 do
2: ∀p ∈M ′ : S[p] 6= ⊥ do
3: ∀(s,m) ∈ S[p] : m 6∈ delivered do
4: delivered := delivered ∪ {m}
5: trigger 〈vscj,Deliver | s,m〉
6: flushing := false; blocked := false;wait := false
7: pending = ∅
8: ∀m do ack[m] := ∅
9: seen := [⊥]N

10: M := M ′

11: trigger 〈vscj, V iew | (vid,M)〉
12: ∀p ∈M do
13: trigger 〈beb,Broadcast | [NewV iew, vid,M ]〉

14: upon event 〈beb,Deliver | [NewV iew, vid′,M ′]〉 such that joined = false do
15: if self ∈M ′ then
16: (vid,M) := (vid′,M ′)
17: correct := M
18: joined := true
19: trigger 〈vscj, JoinOk〉
20: end if

21: upon event 〈vscj, Join | self〉 such that joined = false do
22: trigger 〈beb,Broadcast | [JoinReq, self ]〉

23: upon event 〈beb,Deliver | [JoinReq, p]〉 such that joined = true do
24: correct := correct ∪ {p} \ crashed

5


