
Distributed Algorithms, Final Exam

January 14, 2013

Solution

1

1 Multiple Choice Questions (15 points)

Question 1. (2 points) 1, 3

Question 2. (2 points) 1, 2, 3

Question 3. (2 points) 1, 2, 4

Question 4. (2 points) 2

Question 5. (2 points) 3

Question 6. (5 points)

1. L

2. S

3. L

4. S

5. S

2

2 Reliable Broadcast (13 points)

Question 1. (1 point) Slides or book.

Question 2. (6 points)

1. Uniform reliable broadcast – No

2. Causal broadcast – No

3. Terminating reliable broadcast – No

Question 3. (6 points) This is a best-effort causal broadcast abstraction.
Accordingly, on a crash-free execution (all processes are correct) agreement is
guaranteed due to validity.

Of course, the crash-free case is not that interesting, so lets discuss what
happens in case there are crashes. What happens when a message is broadcast?
A broadcast of message m by process p enforces all other processes to receive all
the messages that belong to the causal past of m1. This, of course, includes the
messages that were delivered and the messages that were broadcast by p before
message m. It should be clear that this is a direct consequence of the definition
of causality:

A message m1 causally precedes a message m2 (m1 → m2) when:

1. both are broadcasts of the same process and m1 was broadcast before m2

1if p does not crash while broadcasting m, case that could lead to m not being delivered
by every process

3

2. m1 is a broadcast of p1 and m2 is a broadcast of p2 and m2 was sent after
p2 delivered m1

3. m1 → m′ and m′ → m2 entails m1 → m2 (transitivity)

So, in an execution where the correct processes keep broadcast messages,
the causal delivery property ensures that all the delivered messages of a process
before m will be delivered before delivering m, ensuring agreement even in the
case of crashes.

However, we cannot guarantee that every process will send an infinite number
of messages, so the following execution is possible:

As you can see, p1 delivers message m sent by p0 just before p0 crashed. Due
to the crash, m was not delivered by p2. If p1 stays inactive (as it happens in
the execution above), p3 is not guaranteed to deliver message m, hence violating
agreement.

Consequently, the broadcast algorithm of the question does not guarantee
the agreement property in executions that there are crashes.

3 View Synchronous Communication (10 points)

Question 1. (4 points) See the lecture’s slides or the book.

Question 2. (4 points) See ?? for the solution.

4

Algorithm 1 Implementation of Stoppable Broadcast using UTRB
1: Implements:
2: StoppableBroadcast, instance sb

3: Uses:
4: UniformTerminatingReliableBroadcast, instances utrb.pi with sender pi ∈ Π
5: ReliableBroadcast, instance rb

6: upon event 〈sb, Init〉 do
7: delivered← ∅
8: trbdone← ∅
9: upon event 〈sb,Broadcast | m〉 do

10: trigger 〈rb,Broadcast | m〉
11: upon event 〈rb,Deliver | p,m〉 do
12: if (p,m) 6∈ delivered then
13: delivered← delivered ∪ {(p,m)}
14: trigger 〈sb,Deliver | p,m〉
15: end if
16: upon event 〈sb, Stop〉 do
17: trigger 〈utrb.pi, Broadcast | delivered〉
18: upon event 〈utrb.pi, Deliver | pi,m〉 do
19: trbdone← trbdone ∪ {pi}
20: if m 6= φ then
21: forall (s,m′) ∈ m′ do
22: if m′ 6∈ delivered then
23: delivered← delivered ∪ {m′}
24: trigger 〈sb,Deliver | s,m′〉
25: end if
26: end if
27: upon event trbdone = Π do
28: trigger 〈sb, StopOk〉

Question 3. (4 points) See ?? for the solution.
To understand the algorithm, remember that events that are not triggered

because of a “such that” construct (lines 12 and 14) are buffered and delivered,
in the order in which they arrived, when the conditions becomes true.

The solution assumes that processes do not receive StopOk before calling
Stop. To be precise, the specification of Stoppable Broadcast does not enforce
this. However the algorithm is simpler with this assumption and it would be
easy to modify it so that it would work without the assumption.

5

Algorithm 2 View-Sychronous Communication using Stoppable Broadcast
1: Implements:
2: ViewSynchronousCommunication, instance vs

3: Uses:
4: StoppableBroadcast, instances sb.i, i ∈ N
5: GroupMembership, instance gm

6: upon event 〈vs, Init〉 do
7: viewId← 0
8: changingV iew ← false
9: nextV iew ← ⊥

10: upon event 〈vs,Broadcast | m〉 do
11: trigger 〈sb.viewId,Broadcast | m〉
12: upon event 〈sb.i,Deliver | p,m〉 such that i = viewId do
13: trigger 〈vs,Deliver | p,m〉
14: upon event 〈gm, V iew | v〉 such that nextV iew = ⊥ do
15: nextV iew ← v
16: upon event nextV iew 6= ⊥ and changingV iew = false do
17: changingV iew ← true
18: trigger 〈vs,Block〉
19: upon event 〈vs,BlockOk〉 do
20: trigger 〈sb.viewId, Stop〉
21: upon event 〈sb.viewId, StopOk〉 do
22: viewId← nextV iew.id
23: changingV iew ← false
24: trigger 〈vs, V iew | nextV iew〉
25: nextV iew ← ⊥

4 Shared Memory (8 points)

Question 1. (2 points)

1. not safe

P1 [W(1)]

P2 [R()->0]

2. safe, but not regular

P1 [W(1)] [W(2)]

P2 [R()->0]

3. regular, but not atomic

P1 [W(1)] [W(2)]

P2 [R()->2]

P3 [R()->1]

4. atomic

P1 [W(1)] [W(2)]

P2 [R()->1]

P3 [R()->2]

6

Question 2. (6 points)

1. The solution in the course has each reader also write its value to every
process before returning its value. This ensures that nobody has an older
version than the reader. However, due to the fact that readers can also
issue writes, the processes need to check the timestamp before accepting
a write.

The algorithm in the exam has the readers only check the timestamp of
other processes before returning. Since only the Writer process can issue
write commands, there is no longer the need to check the timestamp when
accepting a write command — the timestamp of new writes is guaranteed
to be newer, since the writer ensures increasing timestamps. However,
as shown below, the algorithm in the exam does not solve 1-N atomic
registers.

2. The algorithm does not solve the 1-N atomic register problem.

By reading the timestamps from everyone, the algorithm can indeed detect
potential concurrent writes. However, the versioning implemented by the
algorithm is not complete. The algorithm only holds two versions of data,
”new” and ”old”, which is not enough. Since only a successful Read sets
valold, it might happen that the value of valold is very old. The issue is
shown in the execution below.

Writer [W(1)] [W(2)]

Reader1 [R()->0]

Reader2 [R()->1] [R()->1]

Suppose all registers are initialized to 0 (valnew = valold = 0). There
are two writes issued. The first write is not concurrent with any other
operation and terminates successfully. Thus, both Reader1 and Reader2
will store 1 in valnew and 1 in tsnew. The first read by Reader2 completes
successfully and set valold, valnew, tsold and tsnew to 1. Then, during the
second write, Reader1 receives the new value before attempting the read,
thus valnew is 2 and tsnew is 2. Notice that, valold and tsold are still 0 for
Reader1. However, Reader2, does not yet receive the new values by the
time Reader1 starts reading. Reader1 issues a read, detects that Reader2
has old values and thus returns valold. However, valold is still 0 at this
point, since Reader1 never had a successful non-concurrent read. This
execution does not respect an atomic register specification (and not even
a regular register specification).

7

