
1

© R. Guerraoui

Distributed algorithms

Prof R. Guerraoui

lpdwww.epfl.ch

Assistants. R. Banabic and V. Trigonakis

Exam: Written

Reference: Book - Springer Verlag -

 - Introduction to Reliable (and Secure) Distributed Programming -

2

Algorithms (History)

M. Al-Khawarizmi ~9th century:
inventor of the zero, the decimal
system, Arithmetic and Algebra

Calculated the circumference and
volume of planets (including the earth):
the first significant program

3

In short

We study algorithms for distributed
systems: a new way of thinking about
algorithms

Whereas a centralized algorithm is the soul of
a computer, a distributed algorithm is the soul
of a society of computers

4

Distributed algorithms (History)

E. Dijkstra (concurrent os)~60’s

L. Lamport: ‘‘a distributed system is one that

stops your application because a machine you

have never heard from crashed’’ ~70’s

J. Gray (transactions) ~70’s

N. Lynch (consensus) ~80’s

Birman, Schneider, Toueg – Cornell – (this
course) ~90’s

5

Important

• This course is complementary to the course
(concurrent algorithms)

• We study here message passing based
algorithms whereas the other course focuses
on shared memory based algorithms

6

Overview

(1) Why? Motivation

(2) Where? Between the network and
the application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

7

A distributed system

A

B

C

8

Clients-server

Client B

Client A

Server

9

Multiple servers
(genuine distribution)

Server A

Server B

Server C

10

Applications

Military and traffic control

Finances: e-transactions, e-banking,
stock-exchange

Reservation systems

11

The optimistic view

Concurrency => speed (load-balancing)

Partial failures => high-availability

12

The pessimistic view

 Concurrency (interleaving) =>
incorrectness

 Partial failures => incorrectness

13

Distributed algorithms
(Today: Google)

Hundreds of thousands of machines
connected

A Google job involves 2000 machines

10 machines go down per day

14

Overview

(1) Why? Motivation

(2) Where? Between the network and
the application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

15

Distributed systems

16

Distributed systems
The application needs underlying
services for distributed interaction

The network is not enough

Reliability guarantees (e.g., TCP) are
only offered for communication
among pairs of processes, i.e., one-
to-one communication (client-server)

17

Reliable broadcast

Causal order broadcast

Shared memory

Consensus

Total order broadcast

Atomic commit

Leader election

Terminating reliable broadcast

Content of this course

18

Reliable distributed services

Example 1: reliable broadcast

Ensure that a message sent to a
group of processes is received
(delivered) by all or none

Example 2: atomic commit

Ensure that the processes reach a
common decision on whether to
commit or abort a transaction

19

Underlying services

(1): processes (abstracting computers)

(2): channels (abstracting networks)

(3): failure detectors (abstracting time)

20

Processes

 The distributed system is made of a finite
set of processes: each process models a
sequential program

 Processes are denoted by p1,..pN or p, q, r

 Processes have unique identities and know
each other

 Every pair of processes is connected by a
link through which the processes exchange
messages

21

Processes

A process executes a step at every tick of its
local clock: a step consists of

A local computation (local event) and
message exchanges with other processes
(global event)

NB. One message is delivered from/sent to a
process per step

22

Processes
The program of a process is made of a finite
set of modules (or components) organized as
a software stack

Modules within the same process interact by
exchanging events

upon event < Event1, att1, att2,..> do

 // something

 trigger < Event2, att1, att2,..>

23

Modules of a process

request (deliver)

indication

request (deliver)

indication

request (deliver)

indication

24

Overview

(1) Why? Motivation

(2) Where? Between the network and
the application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

25

Approach

Specifications: What is the service?
i.e., the problem ~ liveness + safety

Assumptions: What is the model, i.e.,
the power of the adversary?

Algorithms: How do we implement the
service? Where are the bugs (proof)?
What cost?

26

Overview

(1) Why? Motivation

(2) Where? Between the network and
the application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

27

Liveness and safety

Safety is a property which states that
nothing bad should happen

Liveness is a property which states
that something good should happen

Any specification can be expressed in
terms of liveness and safety
properties (Lamport and Schneider)

28

Liveness and safety

Example: Tell the truth

Having to say something is liveness

Not lying is safety

29

Specifications

Example 1: reliable broadcast

Ensure that a message sent to a
group of processes is received by all
or none

Example 2: atomic commit

Ensure that the processes reach a
common decision on whether to
commit or abort a transaction

30

Overview

(1) Why? Motivation

(2) Where? Between the network and
the application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

31

Overview

(1) Why? Motivation

(2) Where? Between the network and the

application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

 3.2.1 Assumptions on processes and
channels

 3.2.2 Failure detection

32

Processes

 A process either executes the algorithm assigned

to it (steps) or fails

 Two kinds of failures are mainly considered:

Omissions: the process omits to send

messages it is supposed to send (distracted)

Arbitrary: the process sends messages it is

not supposed to send (malicious or Byzantine)

Some models in between

33

Processes

Crash-stop: a more specific case of
omissions

A process that omits a message to a
process, omits all subsequent
messages to all processes
(permanent distraction): it crashes

34

Processes
By default, we shall assume a crash-stop
model throughout this course; that is, unless
specified otherwise: processes fail only by
crashing (no recovery)

A correct process is a process that does not
fail (that does not crash)

35

Processes communicate by message passing
through communication channels

Messages are uniquely identified and the
message identifier includes the sender’s identifier

Processes/Channels

36

Fair-loss links

 FL1. Fair-loss: If a message is sent
infinitely often by pi to pj , and neither pi
or pj crashes, then m is delivered infinitely
often by pj

 FL2. Finite duplication: If a message is
sent a finite number of times by pi to pj, it
is delivered a finite number of times by pj

FL3. No creation: No message is
delivered unless it was sent

37

Stubborn links

 SL1. Stubborn delivery: if a process pi
sends a message m to a correct process pj,
and pi does not crash, then pj delivers m
an infinite number of times

SL2. No creation: No message is
delivered unless it was sent

38

Algorithm (sl)
Implements: StubbornLinks (sp2p).

Uses: FairLossLinks (flp2p).

upon event < sp2pSend, dest, m> do

 while (true) do

 trigger < flp2pSend, dest, m>;

upon event < flp2pDeliver, src, m> do

 trigger < sp2pDeliver, src, m>;

39

Reliable (Perfect) links
Properties

 PL1. Validity: If pi and pj are correct,
then every message sent by pi to pj is
eventually delivered by pj

 PL2. No duplication: No message is
delivered (to a process) more than once

 PL3. No creation: No message is
delivered unless it was sent

40

Algorithm (pl)
Implements: PerfectLinks (pp2p).

Uses: StubbornLinks (sp2p).

upon event < Init> do delivered := empy;

upon event < pp2pSend, dest, m> do

trigger < sp2pSend, dest, m>;

upon event < sp2pDeliver, src, m> do

 if m delivered then

 trigger < pp2pDeliver, src, m>;

 add m to delivered;

41

Reliable links

We shall assume reliable links (also called
perfect) throughout this course (unless
specified otherwise)

Roughly speaking, reliable links ensure that
messages exchanged between correct
processes are not lost

42

Overview

(1) Why? Motivation

(2) Where? Between the network and the

application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

 3.2.1 Processes and links

 3.2.2 Failure Detection

43

Failure Detection

A failure detector is a distributed oracle
that provides processes with suspicions about
crashed processes

It is implemented using (i.e., it encapsulates)
timing assumptions

According to the timing assumptions, the
suspicions can be accurate or not

44

Failure Detection
A failure detector module is defined by events
and properties

Events

 Indication: <crash, p>

Properties:

 Completeness

 Accuracy

45

Failure Detection
Perfect:

Strong Completeness: Eventually, every process that
crashes is permanently suspected by every correct
process

Strong Accuracy: No process is suspected before it
crashes

Eventually Perfect:
Strong Completeness

Eventual Strong Accuracy: Eventually, no correct
process is ever suspected

46

Failure Detection
Implementation:

(1) Processes periodically exchange heartbeat
messages

(2) A process sets a timeout based on worst case
round trip of a message exchange

(3) A process suspects another process if it
timeouts that process

(4) A process that delivers a message from a
suspected process revises its suspicion and
increases its time-out

47

Timing assumptions
Synchronous:

Processing: the time it takes for a process to execute
a step is bounded and known

Delays: there is a known upper bound limit on the
time it takes for a message to be received

Clocks: the drift between a local clock and the global
real time clock is bounded and known

Eventually Synchronous: the timing
assumptions hold eventually

Asynchronous: no assumption

48

Overview

(1) Why? Motivation

(2) Where? Between the network and
the application

(3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

49

Algorithms
modules of a process

request (deliver)

indication

request (deliver)

indication

request (deliver)

indication

50

Algorithms

p1

p2

p3

m1

m2

m3

51

Algorithms

p1

p2

p3

m1

m2

crash

52

The rest; for every abstraction

 (A) We assume a crash-stop system with
a perfect failure detector (fail-stop)

 We give algorithms

(B) We try to make a weaker assumption

 We revisit the algorithms

53

Reliable broadcast

Causal order broadcast

Shared memory

Consensus

Total order broadcast

Atomic commit

Leader election

Terminating reliable broadcast

Content of this course

