
1

© R. Guerraoui

Regular register algorithms

R. Guerraoui

Distributed Programming Laboratory

 lpdwww.epfl.ch

2

Overview of this lecture
(1) Overview of a register algorithm

(2) A bogus algorithm

(3) A simplistic algorithm

(4) A simple fail-stop algorithm

(5) A tight asynchronous lower bound

(6) A fail-silent algorithm

3

A distributed system

P1

P2

P3

4

Shared memory model

Registers

P1 P3

P3

5

Message passing model

A

B

C

6

Implementing a register

 From message passing to shared memory

 Implementing the register comes down to

implementing Read() and Write() operations at

every process

7

Implementing a register

 Before returning a Read() value, the process
must communicate with other processes

 Before performing a Write(), i.e., returning the
corresponding ok, the process must
communicate with other processes

8

Overview of this lecture
(1) Overview of a register algorithm

(2) A bogus algorithm

(3) A simplistic algorithm

(4) A simple fail-stop algorithm

(5) A tight asynchronous lower bound

(6) A fail-silent algorithm

9

A bogus algorithm

 We assume that channels are reliable (perfect

point to point links)

 Every process pi holds a copy of the register

value vi

10

A bogus algorithm

 Read() at pi

Return vi

 Write(v) at pi

 vi := v

Return ok

 The resulting register is

live but not safe:

Even in a sequential and

failure-free execution, a

Read() by pj might not

return the last written value,

say by pi

11

P2

P1

W(5) W(6)

R1() -> 0 R2() -> 0 R3() -> 0

No safety

12

Overview of this lecture
(1) Overview of a register algorithm

(2) A bogus algorithm

(3) A simplistic algorithm

(4) A simple fail-stop algorithm

(5) A tight asynchronous lower bound

(6) A fail-silent algorithm

13

A simplistic algorithm

 We still assume that channels are reliable but

now we also assume that no process fails

 Basic idea: one process, say p1, holds the value

of the register

14

A simplistic algorithm

 Read() at pi

 send [R] to p1

 when receive [v]

Return v

 Write(v) at pi

 send [W,v] to p1

 when receive [ok]

Return ok

 At p1:

T1:

 when receive [R] from pi

 send [v1] to pi

T2:

 when receive [W,v] from pi

 v1 := v

 send [ok] to pi

15

Correctness (liveness)

 By the assumption that

 (a) no process fails,

 (b) channels are reliable

no wait statement blocks forever, and hence

every invocation eventually terminates

16

Correctness (safety)

(a) If there is no concurrent or failed operation, a Read()
returns the last value written

(b) A Read() must return some value concurrently written
or the last value written

NB. If a Read() returns a value written by a given Write(),
and another Read() that starts later returns a value written
by a different Write(), then the second Write() cannot
start after the first Write() terminates

17

Correctness (safety – 1)

(a) If there is no concurrent or failed operation, a
Read() returns the last value written

Assume a Write(x) terminates and no other Write() is
invoked. The value of the register is hence x at p1. Any
subsequent Read() invocation by some process pj
returns the value of p1, i.e., x, which is the last written
value

18

Correctness (safety – 2)

(b) A Read() returns the previous value written or

the value concurrently written

Let x be the value returned by a Read(): by the

properties of the channels, x is the value of the register

at p1. This value does necessarily come from a

concurrent or from the last Write().

19

What if?

 Processes might crash?

 If p1 crashes, then the register is not live (wait-

free)

 If p1 is always up, then the register is regular and

wait-free

20

Overview of this lecture
(1) Overview of a register algorithm

(2) A bogus algorithm

(3) A simplistic algorithm

(4) A simple fail-stop algorithm

(5) A tight asynchronous lower bound

(6) A fail-silent algorithm

21

A fail-stop algorithm
We assume a fail-stop model; more
precisely:

 any number of processes can fail by
crashing (no recovery)

 channels are reliable

 failure detection is perfect (we have a
perfect failure detector)

22

We implement a regular register

every process pi has a local copy of the
register value vi

 every process reads locally

 the writer writes globally, i.e., at all (non-
crashed) processes

A fail-stop algorithm

23

A fail-stop algorithm
Write(v) at pi

 send [W,v] to all

 for every pj, wait
until either:

 receive [ack] or

 suspect [pj]

Return ok

At pi:

 when receive [W,v]
from pj

 vi := v

 send [ack] to pj

Read() at pi

Return vi

24

Correctness (liveness)

A Read() is local and eventually returns

A Write() eventually returns, by the

 (a) the strong completeness property
of the failure detector, and

 (b) the reliability of the channels

25

Correctness (safety – 1)
(a) In the absence of concurrent or
failed operation, a Read() returns the
last value written

 Assume a Write(x) terminates and no other
Write() is invoked. By the accuracy property of the
failure detector, the value of the register at all
processes that did not crash is x. Any subsequent
Read() invocation by some process pj returns the

value of pj, i.e., x, which is the last written value

26

Correctness (safety – 2)

(b) A Read() returns the value
concurrently written or the last value
written

Let x be the value returned by a Read(): by
the properties of the channels, x is the
value of the register at some process. This
value does necessarily come from the last
or a concurrent Write().

27

What if?

Failure detection is not perfect

Can we devise an algorithm that
implements a regular register and
tolerates an arbitrary number of crash
failures?

28

Overview of this lecture
(1) Overview of a register algorithm

(2) A bogus algorithm

(3) A simplistic algorithm

(4) A simple fail-stop algorithm

(5) A tight asynchronous lower bound

(6) A fail-silent algorithm

29

Lower bound

 Proposition: any wait-free asynchronous

implementation of a regular register requires a

majority of correct processes

 Proof (sketch): assume a Write(v) is performed and n/2

processes crash, then a Read() is performed and the

other n/2 processes are up: the Read() cannot see the

value v

 The impossibility holds even with a 1-1 register (one writer

and one reader)

30

The majority algorithm [ABD95]

 We assume that p1 is the writer and any process

can be reader

 We assume that a majority of the processes is

correct (the rest can fail by crashing – no

recovery)

 We assume that channels are reliable

 Every process pi maintains a local copy of the

register vi, as well as a sequence number sni and

a read timestamp rsi

 Process p1 maintains in addition a timestamp ts1

31

Algorithm - Write()

 Write(v) at p1

 ts1++

 send [W,ts1,v] to all

 when receive

[W,ts1,ack] from

majority

Return ok

 At pi

when receive [W,ts1, v]

from p1

If ts1 > sni then

 vi := v

 sni := ts1

 send [W,ts1,ack] to

p1

32

Algorithm - Read()

 Read() at pi

 rsi++

 send [R,rsi] to all

 when receive [R,

rsi,snj,vj] from majority

 v := vj with the largest

snj

Return v

 At pi

when receive [R,rsj]

from pj

 send [R,rsj,sni,vi] to pj

33

What if?

Any process that receives a write
message (with a timestamp and a
value) updates its value and sequence
number, i.e., without checking if it
actually has an older sequence number

34

P1
W(5) W(6)

P2

 sn1 = 1; v1 = 5

Old writes

P3

 sn2 = 1; v2 = 5

 sn3 = 2; v3 = 6 sn3 = 1; v3 = 5

R() -> 5

 sn1 = 2; v1 = 6

35

Correctness 1
 Liveness: Any Read() or Write() eventually

returns by the assumption of a majority of
correct processes (if a process has a newer
timestamp and does not send [W,ts1,ack],
then the older Write() has already returned)

 Safety 2: By the properties of the channels,
any value read is the last value written or the
value concurrently written

36

Correctness 2 (safety – 1)
(a) In the absence of concurrent or
failed operation, a Read() returns the
last value written

 Assume a Write(x) terminates and no other
Write() is invoked. A majority of the processes
have x in their local value, and this is associated
with the highest timestamp in the system. Any
subsequent Read() invocation by some process pj

returns x, which is the last written value

37

What if?

Multiple processes can write
concurrently?

38

P1
W(5) W(6)

P2

 ts1 = 1

Concurrent writes

P3

R() -> 6

 ts1 = 2

W(1)

 ts3 = 1

39

Overview of this lecture
(1) Overview of a register algorithm

(2) A bogus algorithm

(3) A simplistic algorithm

(4) A simple fail-stop algorithm

(5) A tight asynchronous lower bound

(6) A fail-silent algorithm

