
Distributed systems

Total Order Broadcast

Prof R. Guerraoui

Distributed Programming Laboratory

Overview
Intuitions: what total order broadcast can
bring?

Specifications of total order broadcast

Consensus-based total order algorithm

Broadcast

B

A

C

m

m

deliver

broadcast

deliver

Intuitions (1)
In reliable broadcast, the processes are free
to deliver messages in any order they wish

 In causal broadcast, the processes need to
deliver messages according to some order
(causal order)

The order imposed by causal broadcast is
however partial: some messages might be
delivered in different order by the processes

Reliable Broadcast

p1

p2

p3

m2

m1

m1

m2

m1

m3

m1 m2 m3

m3

m3

m2

Causal Broadcast

p1

p2

p3

m2

m1

m1

m2

m1

m3

m1 m2 m3

m3

m3

m2

Intuitions (2)
In total order broadcast, the processes must
deliver all messages according to the same
order (i.e., the order is now total)

Note that this order does not need to respect
causality (or even FIFO ordering)

Total order broadcast can be made to respect
causal (or FIFO) ordering

Total Order Broadcast (I)

p1

p2

p3

m2

m1

m3

m2

m1

m3

m1 m2 m3

m1

m3

m2

Total Order Broadcast (II)

p1

p2

p3

m1

m2

m3

m1

m1

m3

m2 m1 m3

m2

m3

m2

Intuitions (3)
A replicated service where the replicas need
to treat the requests in the same order to
preserve consistency

(we talk about state machine replication)

A notification service where the subscribers
need to get notifications in the same order

Modules of a process

request

indication

indication

indication

request

Overview
Intuitions: what total order broadcast can
bring?

Specifications of total order broadcast

Consensus-based algorithm

Total order broadcast (tob)
Events

 Request: <toBroadcast, m>

 Indication: <toDeliver, src, m>

• Properties:

• RB1, RB2, RB3, RB4

• Total order property

Specification (I)

Validity: If pi and pj are correct, then every message
broadcast by pi is eventually delivered by pj

No duplication: No message is delivered more than
once

No creation: No message is delivered unless it was
broadcast

(Uniform) Agreement: For any message m. If a
correct (any) process delivers m, then every correct
process delivers m

Specification (II)

(Uniform) Total order:

 Let m and m’ be any two messages.

 Let pi be any (correct) process that delivers m
without having delivered m’

 Then no (correct) process delivers m’ before
m

Specifications

Note the difference with the following
properties:

Let pi and pj be any two correct (any) processes that
deliver two messages m and m’. If pi delivers m’
before m, then pj delivers m’ before m.

Let pi and pj be any two (correct) processes that deliver
a message m. If pi delivers a message m’ before m,
then pj delivers m’ before m.

p1

p2

p3

m1

m2

p4

crash

crash
m2

m1

p1

p2

p3

m1

m2

p4

crash

crash
m2

m1

Overview
Intuitions: what total order broadcast can
bring?

Specifications of total order broadcast

Consensus-based algorithm

(Uniform) Consensus
 In the (uniform) consensus problem, the

processes propose values and need to agree on
one among these values

C1. Validity: Any value decided is a value proposed

C2. (Uniform) Agreement: No two correct (any)
processes decide differently

C3. Termination: Every correct process eventually
decides

C4. Integrity: Every process decides at most once

Consensus
Events

 Request: <Propose, v>

 Indication: <Decide, v’>

• Properties:

• C1, C2, C3, C4

Modules of a process

request

indication

indication

indication

request
indication request

Algorithm
Implements: TotalOrder (to).

Uses:

 ReliableBroadcast (rb).

 Consensus (cons);

upon event < Init > do

 unordered: = delivered: = ;

 wait := false;

 sn := 1;

Algorithm (cont’d)
upon event < toBroadcast, m> do

 trigger < rbBroadcast, m>;

upon event <rbDeliver,sm,m> and (m delivered)
do

 unordered := unordered U {(sm,m)};

upon (unordered) and not(wait) do

 wait := true:

 trigger < Propose, unordered>sn;

Algorithm (cont’d)
upon event <Decide,decided>sn do

 unordered := unordered \ decided;

 ordered := deterministicSort(decided);

 for all (sm,m) in ordered:

 trigger < toDeliver,sm,m>;

 delivered := delivered U {m};

 sn : = sn + 1;

 wait := false;

Equivalences

1. One can build consensus with total order
broadcast

2. One can build total order broadcast with
consensus and reliable broadcast

 Therefore, consensus and total order
broadcast are equivalent problems in a
system with reliable channels

