
Distributed Algorithms, Final Exam

January 14, 2013

Name:
Sciper number:

Time Limit: 3 hours

Instructions:

• This exam is closed book: no notes or cheat sheets are allowed.

• Write your name on each page of the exam.

• If you need additional paper, please ask one of the TAs.

• Read through each problem before starting solving.

• Partial credit will be awarded, so explain your thinking carefully.

• State clearly any additional assumptions that you use which are not stated
in the question.

Good Luck!

Grading (max points: 50)
Part 1 Part 2 Part 3 Part 4 Total

1



1 Multiple Choice Questions (15 points)

Question 1. (2 points) Consider the broadcast execution below. Which of
the following statements are true about this execution?

1. The execution is a correct causal broadcast execution.

2. The execution is a correct total order broadcast execution.

3. The execution is a correct uniform reliable broadcast execution.

4. None of the above.

Question 2. (2 points) Consider the broadcast execution below. Which of
the following statements are true about this execution?

1. The execution is a correct causal broadcast execution.

2. The execution is a correct total order broadcast execution.

3. The execution is a correct uniform reliable broadcast execution.

4. None of the above.

Question 3. (2 points) In the course, you saw a round-based concensus
algorithm in which each process is leader of one round. A process goes from one
round to the next when it receives a message from the leader of the current round
or when it detects that the leader of the current round has crashed. Processes
maintain a prefered value, which they update when receiving a message from
the leader of the current round. A process that is the leader of the current round
decides its preferred value and then broadcasts its preferred value. Which of
the following are properties of this algorithm?

1. All correct processes decide the same value.

2. If a process decides, then it decides a value that was proposed.

3. If two processes decide, then they decide the same value.

4. All correct processes that decide decide a value that was proposed.

2



Question 4. (2 points) In the course you saw an algorithm implementing
View Synchronous Communication using Uniform Terminating Reliable Broad-
cast, Best Effort Broadcast, and Group Membership. Which of the following
statements are true?

1. The algorithm obtained by replacing Best Effort Broadcast by Uniform
Reliable Broadcast solves Uniform View Synchronous Communication.

2. The algorithm obtained by replacing Best Effort Broadcast by Uniform
Reliable Broadcast solves View Synchronous Communication.

Question 5. (2 points) Which of the following abstractions are equivalent
to consensus in a system with reliable channels?

1. Atomic Commit.

2. Terminating Reliable Broadcast.

3. Total Order Broadcast.

4. Perfect Failure Detector.

Question 6. (5 points) Which of the following properties are safety prop-
erties and which are liveness? Mark an ”S” or ”L” next to each property.

1. For any message m1 delivered by a process p1, if there exists another
process p2 that delivered m1 and then delivered a message m2, then p1
also delivers m2.

2. For every pair of processes p1 and p2 that deliver a message m1, if p1
delivers a message m2 before delivering m1, then p2 also delivers m2 before
delivering m1.

3. Every process eventually terminates.

4. Every process terminates before time T.

5. No two processes deliver the same message.

3



2 Reliable Broadcast (13 points)

Question 1. (1 point) Give the total order property of total order broadcast.

Question 2. (6 points) If an algorithm implements total order broadcast,
does it also satisfy the properties of the following?

1. Uniform reliable broadcast

2. Causal broadcast

3. Terminating reliable broadcast

For each of the three (separately), either explain why it does, or give an
execution that is allowed by total order broadcast, but is not allowed by the
corresponding broadcast abstraction.

Question 3. (6 points) Consider a broadcast algorithm that has the follow-
ing properties:

• Validity : For any two processes pi and pj , if pi and pj are correct, then
every message broadcast by pi is eventually delivered by pj .

• No duplication: No message is delivered more than once.

• No creation: If a message m is delivered by some process pj , then m was
previously broadcast by some process pi.

• Causal delivery : No process pi delivers a message m2 unless pi has already
delivered every message m1 such that m1 → m2.

Does this broadcast algorithm satisfy the agreement property (if a message
m is delivered by some correct process, them m is eventually delivered by every
correct process)? Motivate your answer.

4



3 View Synchronous Communication (10 points)

The goal of this problem is to implement the View Synchronous Communication
abstraction using Group Membership and a new abstraction called Stoppable
Broadcast. Recall that View Synchronous Communication combines the prop-
erties of Reliable Broadcast and Group Membership as specified in Module ??.

Note that there is no specification in Module ?? for how the Block and
BlockOk events should be used. As seen in the course, the Block event is
used to request that the application stop broadcasting messages in the current
view, while the BlockOk event indicates that the application agreed to stop
broadcasting messages in the current view. We assume that the application
layer is well behaved: whenever it is asked to stop broadcasting messages it
eventually emits a BlockOk event and stops broadcasting message until the
next view is installed.

In the course you saw an implementation of View Synchronous Communica-
tion that uses Uniform Terminating Reliable Broadcast, Best Effort Broadcast,
and Group Membership.

Question 1. (4 points) Give the specification of Uniform Terminating Re-
liable Broadcast and Group Membership.

Stoppable Broadcast is a new abstraction that you have not seen in the course.
It is a broadcast abstraction augmented with the Stop and StopOk events.

As long as no process emits a Stop event, Stoppable Broadcast behaves
like Reliable Broadcast. However, processes may request the broadcast to be
stopped by emitting a Stop request. In the same spirit as with the Block event of
View Synchronous Communication, we assume that when the application layer
requests the broadcast to stop then the application layer also stops broadcasting
new messages.

Stoppable Broadcast ensures that if all correct processes emit a Stop event,
then all correct processes eventually receive a StopOk event. Crucially, when
a process p receives a StopOk event, it is guaranteed that no more messages
will ever be delivered by p. The specification of Stoppable Broadcast is given in
Module ??.

Question 2. (4 points) Taking inspiration from the implementation of View
Synchronous Communication seen in the course, give an implementation of Stop-
pable Broadcast using only Uniform Terminating Reliable Broadcast and Re-
liable Broadcast. If no process emits a Stop event, your algorithm should use
Reliable Broadcast only. Remember that a Terminating Reliable Broadcast
instance has a unique sender.

Question 3. (4 points) Implement View Synchronous Communication using
only Stoppable Broadcast and Group Membership.

5



Module 1 View Synchronous Communication
1: Module:
2: Name: ViewSynchronousCommunication, instance vsc.

3: Events:
4: Request: 〈vsc,Broadcast | m〉: Broadcasts the message m to all processes.
5: Indication: 〈vsc,Deliver | p,m〉: Delivers the message m, whose sender is p.

6: Indication: 〈vsc, V iew | V 〉: Installs a new view V = (id,M) with view identifier id
and membership M .

7: Indication: 〈vsc,Block〉: Requests that no new messages are broadcast temporarily
until the new view is installed.

8: Request: 〈vsc,BlockOk〉: Confirms that no new messages will be broadcast until the
next view is installed.

9: Properties:
10: VS1: View Inclusion: If some process delivers a message m from process p in view

V, then m was broadcast by p in view V .
11: VS2 to VS5: The same as properties RB1 to RB4 of Reliable Broadcast.
12: VS6 to VS9: The same as properties GM1 to GM4 of Group Membership.

Module 2 Stoppable Broadcast
1: Module:
2: Name: StoppableBroadcast, instance sb.

3: Events:
4: Request: 〈sb,Broadcast | m〉: Broadcasts the message m to all processes.
5: Indication: 〈sb,Deliver | p,m〉: Delivers the message m, whose sender is p.

6: Request: 〈sb, Stop〉: Requests that the broadcast be stopped. It is assumed that a
process calling stop also stops broadcasting messages.

7: Indication: 〈sb, StopOk〉: Confirms that the broadcast has been stopped.

8: Properties:
9: SB1 to SB4: The same as properties RB1 to RB4 of ReliableBroadcast.

10: SB5: If every correct process calls stop then every correct process eventually receives
a 〈sb, StopOk〉 indication.

11: SB6: When a process receives a 〈sb, StopOk〉 indication then it stops delivering mes-
sages forever.

6



4 Shared Memory (10 points)

Question 1. (2 points) For shared memory registers, give an execution that
is

1. not safe

2. safe, but not regular

3. regular, but not atomic

4. atomic

Question 2. (8 points) Consider the code in Algorithm ??. The code is a
variation of the 1-N atomic register implementation. Each process keeps two
versions of the data value and its timestamp: valnew with timestamp tsnew and
valold with timestamp tsold. The idea of the algorithm is to detect incomplete
concurrent writes. If such a write is detected during a read operation, then the
read will return the old value. If no such write is detected, the read updates
the old value to the new value and returns it. In order to check whether there
is a concurrent write that has not reached all processes, a process first reads
the latest timestamp received by all other processes. If there is a process that
has an old timestamp (tsj < tsnew), then it means that a concurrent write has
reached this process, but not process pj .

Notice that in Algorithm ?? we use the notation from the slides. We consider
that the functions are atomic, meaning that you do not need to worry about in-
function concurrency problems, such as tsnew changing between the beginning
and end of the Read handler.

1. Present, at a high level, the 1-N atomic register implementation described
in the course. What is the strategy taken by the solution in the course?
How does it compare to Algorithm ??? (You should write only up to 5
lines for this answer) (4 points)

2. Does Algorithm ?? solve the 1-N atomic register problem? Please explain.
(4 points)

7



Algorithm 3 1-N atomic register implementation

Write(v) at p1
ts++
send [W, ts, v] to all
for every pi, wait until either:

receive [ack]
or

suspect [pi]
return OK

Read() at pi
send [ReadTS] to all
for every pj , wait until either:

receive [tsj ]
or

suspect [pj ]

writeDone := TRUE
for every tsj such that pj is not suspected

if tsj < tsnew
writeDone := FALSE

if writeDone = TRUE
valold := valnew
tsold := tsnew

return valold

At pi
When pi receives [ReadTS]

return tsnew

When pi receives [W, ts, v] from p1
valnew := v
tsnew := ts

8


