
Distributed Algorithms, Bonus Exam

xx

December 13, 2012

Name:
Sciper number:

1



Assume that we work in the fail-stop model and consider Algorithm 1.
Recall that in the fail-stop model we consider a set of n processes {p1, p2, . . . , pn}

and we suppose that any process may stop taking steps at any time and that
all processes have access to a perfect failure detector. Moreover, when a process
stops taking steps, it never takes any step again.

Observe that Algorithm 1 is similar to an Algorithm you saw in the course
and that both solve non-uniform consensus in the fail-stop model.

Your task is to answer the following question:
Is it possible to obtain a uniform consensus algorithm by modifying Algo-

rithm 1 as follows?

• Adding new variables to the algorithm and possibly initializing them in
the 〈cons | Init〉 handler.

• Replacing the pseudo-code of the 〈urb,Deliver | round, v〉 handler (lines
18 to 22) by a new block of pseudo-code that may do any local computation
but that must not trigger any event other than the Decide event.

To clarify, by local computation we mean variable assignment, “if” blocks,
and “while” blocks. Your modifications should not contain any trigger event
except for the Decide event.

Write a detailed explanation of your answer, focusing on both the Agreement
and Termination properties.

2



1: Implements:
2: Consensus (cons)

3: Uses:
4: UniformReliableBroadcast (urb)
5: PerfectFailureDetector (P )

6: upon event 〈cons, Init〉 do
7: suspected← ∅
8: round← 1
9: currentProposal← ⊥
10: delivered← [false]N

11: upon event 〈P,Crash | p〉 do
12: suspected← suspected ∪ {p}

13: upon event 〈cons, Propose | v〉 do if currentProposal = ⊥ then
14:

end
currentProposal← v

15:

16:upon event 〈urb,Deliver | round, v〉 do if round = i then
17:

end
trigger 〈cons,Decide | v〉

18:
19:currentProposal← v
20:delivered[round]← true

21:upon event delivered[round] = true or pround ∈ suspected do
22:round← round+ 1

23:upon event round = i and currentProposal 6= ⊥ do
24:trigger 〈urb,Broadcast | pi, currentProposal〉

Algorithm 1: Non-Uniform consensus algorithm, code for process pi

3



Solution

The resulting algorithm would not solve uniform consensus.

Agreement

First, let us consider agreement.
Suppose that a process decides before hearing from everybody else (either

receiving a message or a crash notification). In other words, suppose that pi
decides after receiving a message or the crash notification from a set of processes
S, where S ⊂ Π, S 6= Π. Suppose there is a correct process pj such that pi did
not deliver any message from pj before deciding.

Suppose now that pi crashes, along with all processes in S. Suppose that pj
receives the crash notifications for pi and all processes in S before it delivers the
urb broadcasts. pj cannot know whether the processes in S broadcast anything
before crashing, therefore pj must decide on a value without waiting for a deliver.
Since pj did not receive the value proposed by pi or by the processes in S, pj will
decide on a different value. Therefore, pi and pj will decide differently, violating
uniform agreement. This means that pi cannot decide before hearing a message
or a crash notification from every other process. (Basically, in the round-based
algorithm, it means that processes must either use acknowledgments from every
correct process or wait until the final round before deciding)

Termination

Now let us consider termination.
We proved previously that we need to wait for a message or crash notification

from every process before deciding.
Consider now a scenario where there is a set S of correct processes and a

faulty process pi, pi /∈ S, where i is greater than the ids of all processes in S.
Suppose that every process p ∈ S receives a message from every other process in
S, but not from pi. This means that all processes are waiting to hear a message
from pi or to hear of pi’s crash before deciding. Since the urbDeliver function
only accepts messages from a particular sender (the sender id must be equal to
the local round variable) and all processes are waiting only for a message from
pi, it means that the local round of at least one process is equal to i (pi’s id).
We denote that process by pj .

Suppose that pi crashes before broadcasting any message. Notice that the
crash handler of the correct processes will add pi to suspected and increment
the local round number. Therefore, the local round of pj will become i + 1.
However, since in our scenario i is the highest id, there is no process pi+1. This
means that pj will now wait forever for messages from a process that does not
exist. The urbDeliver of pj will never be triggered again, meaning that pj will
never decide and termination will be violated.

4



Elegant proof by one of your colleagues

Suppose that there is a single correct process, pi. This means that pi must
decide when round = i, since otherwise it will never terminate (the urbDeliver
code will only be triggered exactly once). However, if a process decides in round
i and then crashes, it might violate agreement (similar proof to above).

5


