Distributed Systems

Group Membership and View
Synchronous Communication

Prof R. Guerraoui
Distributed Programming Laboratory

Group Membership

@

@é Who is there? %\g&i

== Kj
®

Group Membership

e In some distributed applications, processes need to
know which processes are participating in the
computation and which are not

e Failure detectors provide such information; however,
that information is not coordinated (see next slide)
even if the failure detector is perfect

Perfect Failure Detector
suspect(p2) suspect(p2,p3)

p1—|—|—>

crash

p2 3< crash
p3 H

suspect() suspect(p3) suspect(p2,p3)
4

e jeees T Lo

4

Group Membership
V1 = (pl,p4)

p1—|—>

crash

p2 ; < crash

p2 H

P SRR ok Tlaee e ool B
VI =(pl,p4)

5

Group Membership

e To illustrate the concept, we focus here on a

group membership abstraction to coordinate the
information about crashes

e In general, a group membership abstraction can
also typically be used to coordinate the processes
joinning and leaving explicitly the set of
processes (i.e., without crashes)

Group Membership

o Like with a failure detector, the processes are
informed about failures; we say that the processes
install views

o Like with a perfect failure detector, the processes
have accurate knowledge about failures

o Unlike with a perfect failure detector, the
information about failures are coordinated.: the
processes install the same sequence of views

Group Membership

Membl1. Local Monotonicity: If a process installs view
(j,M) after installing (k,N), thenj > kand M <N

Memb2. Agreement: No two processes install views (j,M)
and (j,M’) such that M # M’

Memb3. Completeness: If a process p crashes, then
there is an integer j such that every correct process
eventually installs view (j,M) such that p & M

Memb4. Accuracy: If some process installs a view (i,M)
and p € M, then p has crashed

Group Membership

Events
Indication: <membView, V>

o Properties:
e Membl, Memb2, Memb3, Memb4

Algorithm (gmp)

Implements: groupMembership (gmp).
Uses:
PerfectFailureDetector (P).
UniformConsensus(Ucons).
upon event < Init > do
view := (0,S);
correct := S;
wait := true;

10

Algorithm (gmp — cont'd)

upon event < crash, pi > do
correct := correct \ {pi};

e upon event (correct < view.memb) and (wait =
false) do

e wait := true;
o trigger<ucPropose,(view.id+1,correct) >;

11

Algorithm (gmp — cont’d)

e upon event < ucDecided, (id, memb)> do
e view := (id, memb);
e wait := false;
e trigger < membView, view>;

12

Algorithm (gmp)

UCons((pl,p2,p4);(p1,p2,p4))

p14|—|_’

crash

= H UCons((p1,p4);(p1,p4))
crash

p3 H

UCons((pl,p3.p4);(p1,p2.p4))

p4

UCons((pl,p4);(pl,p4))

13

Group Membership and Broadcast

membView(pl,p3)

membView(pl,p3)

14

View Synchrony

o View synchronous broadcast is an abstraction that
results from the combination of group membership
and reliable broadcast

o View synchronous broadcast ensures that the
delivery of messages is coordinated with the
installation of views

15

View Synchrony

Besides the properties of group membership
(Memb1-Memb4) and reliable broadcast
(RB1-RB4), the following property is ensured:

VS: A message is vsDelivered in the view where it
IS vsBroadcast

16

View Synchrony

Events
Request:
<vsBroadcast, m>

e Indication:
e <vsDeliver, src, m>
e <VsView, V>

17

View Synchrony

If the application keeps vsBroadcasting messages, the
view synchrony abstraction might never be able to
vsInstall a new view; the abstraction would be
impossible to implement

We introduce a specific event for the abstraction to
block the application from vsBroadcasting
messages; this only happens when a process crashes

18

View Synchrony

Events
Request:
<vsBroadcast, m>; <vsBlock, ok>
Indication:
<vsDeliver, src, m>; <vsView, V>: <vsBlock>

19

Algorithm (vsc)

Implements: ViewSynchrony (vs).

Uses:
GroupMembership (gmp).
TerminatingReliableBroadcast(trb).
BestEffortBroadcast(beb).

20

Algorithm (vsc — cont'd)

upon event < Init > do
view := (0,S); nextView = 1;
pending := delivered := trbDone := J;
flushing := blocked := false;

2.

Algorithm (vsc — cont'd)

upon event <vsBroadcast,m> and (blocked =
false) do

delivered := delivered U{ m ¢}
trigger <vsDeliver, self, m>;
trigger <bebBroadcast, [Data,view.id,m>;

22

Algorithm (vsc — cont'd)

upon event<bebDeliver,src,[Data,vid,m]) do

If(view.id = vid) and (m & delivered) and
(blocked = false) then

delivered := delivered U { m }
trigger <vsDeliver, src, m >;

23

Algorithm (vsc — cont'd)

upon event < membView, V > do
» addtoTail (pending, V);

upon (pending # &) and (flushing = false) do
nextView := removeFromhead (pending);
flushing := true;
trigger <vsBlock>;

24

Algorithm (vsc — cont'd)

Upon <vsBlockOk> do
blocked := true;
trbDone:= &;
trigger <trbBroadcast, self, (view.id,delivered)>;

25

Algorithm (vsc — cont'd)

Upon <trbDeliver, p, (vid, del)> do
trbDone := trbDone U {pt;
forall m € del and m & delivered do
delivered := delivered U { m ¢},
trigger <vsDeliver, src, m >;

26

Algorithm (vsc — cont'd)

Upon (trbDone = view.memb) and (blocked = true)
do

view := nextView;
flushing := blocked := false;
delivered := J;

trigger <vsView, view>;

27

Consensus-Based View
Synchrony

Instead of launching parallel instances of TRBs, plus a
group membership, we use one consensus instance
and parallel broadcasts for every view change

Roughly, the processes exchange the messages they
have delivered when they detect a failure, and use
consensus to agree on the membership and the
message set

28

Algorithm 2 (vsc)

Implements: ViewSynchrony (vs).

Uses:
UniformConsensus (uc).
BestEffortBroadcast(beb).
PerfectFailureDetector(P).

29

Algorithm 2 (vsc — cont'd)

upon event < Init > do
view := (0,5S);
correct ;= S;
flushing := blocked := false;
delivered := dset := J;

30

Algorithm 2 (vsc — cont'd)

upon event <vsBroadcast,m) and (blocked =
false) do

delivered := delivered U { m }
trigger <vsDeliver, self,m>;
trigger <bebBroadcast,[Data,view.id,m] >;

3.

Algorithm 2 (vsc — cont'd)

upon event<bebDeliver,src,[Data,vid,m]) do

if (view.id = vid) and m & delivered and blocked =
false then

delivered := delivered U { m }
trigger <vsDeliver, src, m >;

32

Algorithm 2 (vsc — cont'd)

upon event < crash, p > do
» correct := correct \{ p ;
s if flushing = false then
e flushing := true;
« trigger <vsBlock>;

33

Algorithm 2 (vsc — cont'd)

Upon <vsBlockOk> do
blocked := true;
trigger <bebBroadcast, [DSET,view.id,delivered] >;

34

Algorithm 2 (vsc — cont'd)

Upon <bebDeliver, src, [DSET,vid,del] > do
dset:= dset U (src,del);

iIf forall p € correct, (p,mset) € dset then
trigger <ucPropose, view.id+1, correct, dset >;

35

Algorithm 2 (vsc — cont'd)

Upon <ucDecided, id, memb, vsdset > do
forall (p,mset) € vsdset: p ememb do
forall (src,m) € mset: m & delivered do

delivered := delivered U {m¢

trigger <vsDeliver, src, m>;
view := (id, memb); flushing := blocked :=
false; dset := delivered := &;
trigger <vsView, view>;

36

Uniform View Synchrony

We now combine the properties of

group membership (Memb1-Memb4) —
which is already uniform

uniform reliable broadcast (RB1-RB4) —
which we require to be uniform

VS: A message is vsDelivered in the view
where it is vsBroadcast — which is already
uniform

3

Uniform View Synchrony

Using uniform reliable broadcast instead of best
effort broadcast in the previous algorithms
does not ensure the uniformity of the
message delivery

38

Uniformity?

vsView(pl,p3)

pl—l_l—’

m vsDeliver(m) m

p2 4|H<cmsh

m
m
p3 ‘ ‘ |

vsView(pl,p3)

39

Algorithm 3 (uvsc)

upon event < Init > do
view := (0,5S);
correct ;= S;
flushing := blocked := false;
udelivered := delivered := dset := J;
for all m: ack(m) := &;

40

Algorithm 3 (uvsc — cont'd)

upon event <vsBroadcast,m) and (blocked = false)
do

delivered := delivered U {m¢;
trigger <bebBroadcast,[Data,view.id,m] >;

41

Algorithm 3 (uvsc — cont’'d)

upon event<bebDeliver,src,[Data,vid,m]) do
if (view.id = vid) then
ack(m) := ack(m) U {src};
If m & delivered then
delivered := delivered U{ m }
trigger <bebBroadcast, [Data,view.id,m] >;

42

Algorithm 3 (uvsc — cont'd)

upon event (view < ack(m)) and (m & udelivered)
do

udelivered := udelivered U4 m {
trigger <vsDeliver, src(m), m >;

43

Algorithm 3 (uvsc — cont'd)

upon event < crash, p > do
» correct := correct \{ p ;
s if flushing = false then
* flushing := true;
« trigger <vsBlock>;

44

Algorithm 3 (uvsc — cont'd)

Upon <vsBlockOk> do
blocked := true;
trigger <bebBroadcast,
[DSET,view.id,delivered] >;
Upon <bebDeliver, src, [DSET,vid,del] > do
dset:= dset U (src,del);

iIf forall p € correct, (p,mset) € dset
then trigger <ucPropose, view.id+1,
correct, dset >;

45

Algorithm 3 (uvsc — cont'd)

Upon <ucDecided, id, memb, vsdset > do
forall (p,mset) € vs-dset: p ememb do
forall (src,m) € mset: m & udelivered do

udelivered := udelivered U {m}
trigger <vsDeliver, src, m>;

view := (id, memb); flushing := blocked :=

false; dset := delivered := udelivered := &;

trigger <vsView, view>;

46

