
1 © R. Guerraoui

Distributed algorithms

Prof R. Guerraoui
lpdwww.epfl.ch

Assistants: Olma Matthaios, Matej Pavlovic, Wang Cheng

Exam: Written 1/3 - 2/3
Reference: Book - Springer Verlag –
http://lpd.epfl.ch/site/education/da

 - Introduction to Reliable (and Secure) Distributed Programming -

2

Algorithms (History)

!  M. Al-Khawarizmi ~9th century:
inventor of the zero, the decimal
system, Arithmetic and Algebra

!  A. Turing: all machines are equal

3

What is an algorithm?

!  An ordered set of elementary instructions

!  All execute on the same Turing machine

!  Complexity measures the number of
instructions (variables)

4

Distributed algorithms

!  E. Dijkstra (concurrent os)~60’s
!  L. Lamport: ‘‘a distributed system is one that

stops your application because a machine you
have never heard from crashed’’ ~70’s

!  J. Gray (transactions) ~70’s
!  N. Lynch (consensus) ~80’s
!  Birman, Schneider, Toueg – Cornell – (this

course) ~90’s

5

In short

!   We study algorithms for distributed systems:

!   A new way of thinking about algorithms and their
complexity

!   Whereas a centralized algorithm is the soul of a
computer, a distributed algorithm is the soul of a
society of computers

6

Important

•  This course is complementary to the course
(concurrent algorithms)

•  We study here message passing based
algorithms whereas the other course focuses
on shared memory based algorithms

7

Overview

!  (1) Why? Motivation

!   (2) Where? Between the network and
the application

!   (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

8

A distributed system

A

B

C

9

Clients-server

Client B

Client A

Server

10

Multiple servers
(genuine distribution)

Server A

Server B

Server C

11

Applications

!  Traffic control

!  Finances: e-transactions, e-banking,
stock-exchange

!  Reservation systems

!  Pretty much everything on the cloud

12

The optimistic view

!  Concurrency => speed (load-balancing)

!  Partial failures => high-availability

13

The pessimistic view

!  Concurrency (interleaving) =>
incorrectness

!  Partial failures => incorrectness

14

Distributed algorithms
(Today: Google)

!  Hundreds of thousands of machines connected
!  A Google job involves 2000 machines
!  10 machines go down per day

15

Overview

!   (1) Why? Motivation

!  (2) Where? Between the network and
the application

!   (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

16

Distributed systems

17

Distributed systems

!  The application needs underlying
services for distributed interaction

!  The network is not enough

!  Reliability guarantees (e.g., TCP) are
only offered for communication
among pairs of processes, i.e., one-
to-one communication (client-server)

18

Reliable broadcast
Causal order broadcast

Shared memory
Consensus

Total order broadcast
Atomic commit
Leader election

Terminating reliable broadcast

Content of this course

19

Reliable distributed services

!  Example 1: reliable broadcast

!  Ensure that a message sent to a
group of processes is received
(delivered) by all or none

!  Example 2: atomic commit

!  Ensure that the processes reach a
common decision on whether to
commit or abort a transaction

20

Underlying services

!   (1): processes (abstracting computers)

!   (2): channels (abstracting networks)

!   (3): failure detectors (abstracting time)

21

!  The distributed system is made of a finite
set of processes: each process models a
sequential program

!  Processes are denoted by p1,..pN or p, q, r
!  Processes have unique identities and know

each other

!  Every pair of processes is connected by a
link through which the processes exchange
messages

Processes

22

!   A process executes a step at every tick of its
local clock: a step consists of

!  A local computation (local event) and
message exchanges with other processes
(global event)

!   NB. One message is delivered from/sent to a
process per step

Processes

23

Processes

!   The program of a process is made of a finite
set of modules (or components) organized as
a software stack

!   Modules within the same process interact by
exchanging events

!   upon event < Event1, att1, att2,..> do

!   // something

!   trigger < Event2, att1, att2,..>

24

Modules of a process

request (deliver)

indication

request (deliver)

indication

request (deliver)

indication

25

Overview

!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

26

Approach

!  Specifications: What is the service?
i.e., the problem ~ liveness + safety

!  Assumptions: What is the model, i.e.,
the power of the adversary?

!  Algorithms: How do we implement the
service? Where are the bugs (proof)?
What cost?

27

Overview

!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

28

Liveness and safety

!  Safety is a property which states that
nothing bad should happen

!  Liveness is a property which states
that something good should happen
!  Any specification can be expressed in

terms of liveness and safety
properties (Lamport and Schneider)

29

Liveness and safety

!  Example: Tell the truth

!  Having to say something is liveness

!  Not lying is safety

30

Specifications

!  Example 1: reliable broadcast

!  Ensure that a message sent to a
group of processes is received by all
or none

!  Example 2: atomic commit

!  Ensure that the processes reach a
common decision on whether to
commit or abort a transaction

31

!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

Overview

32

Overview

!   (1) Why? Motivation
!   (2) Where? Between the network and the

application
!  (3) How? (3.1) Specifications, (3.2)

assumptions, and (3.3) algorithms
!   3.2.1 Assumptions on processes and

channels
!   3.2.2 Failure detection

33

Processes

!  A process either executes the algorithm assigned
to it (steps) or fails

!  Two kinds of failures are mainly considered:

" Omissions: the process omits to send
messages it is supposed to send (distracted)

" Arbitrary: the process sends messages it is
not supposed to send (malicious or Byzantine)

" Some models in between

34

Processes

!  Crash-stop: a more specific case of
omissions
!  A process that omits a message to a

process, omits all subsequent
messages to all processes
(permanent distraction): it crashes

35

Processes

!   By default, we shall assume a crash-stop
model throughout this course; that is, unless
specified otherwise: processes fail only by
crashing (no recovery)

!   A correct process is a process that does not
fail (that does not crash)

36

Processes communicate by message passing
through communication channels

Messages are uniquely identified and the message
identifier includes the sender’s identifier

Processes/Channels

37

Fair-loss links

!   FL1. Fair-loss: If a message is sent infinitely
often by pi to pj , and neither pi or pj crashes,
then m is delivered infinitely often by pj

!   FL2. Finite duplication: If a message is sent a
finite number of times by pi to pj, it is delivered a
finite number of times by pj

!  FL3. No creation: No message is delivered unless
it was sent

38

Stubborn links

!   SL1. Stubborn delivery: if a process pi sends a
message m to a correct process pj, and pi does not
crash, then pj delivers m an infinite number of times

!  SL2. No creation: No message is delivered unless
it was sent

39

Algorithm (sl)

!   Implements: StubbornLinks (sp2p).

!   Uses: FairLossLinks (flp2p).

!   upon event < sp2pSend, dest, m> do

!   while (true) do

!   trigger < flp2pSend, dest, m>;

!   upon event < flp2pDeliver, src, m> do

!   trigger < sp2pDeliver, src, m>;

40

Reliable (Perfect) links

!   Properties

!   PL1. Validity: If pi and pj are correct,
then every message sent by pi to pj is
eventually delivered by pj

!   PL2. No duplication: No message is
delivered (to a process) more than once

!   PL3. No creation: No message is
delivered unless it was sent

41

Algorithm (pl)

!   Implements: PerfectLinks (pp2p).

!   Uses: StubbornLinks (sp2p).

!   upon event < Init> do delivered := empy;

!   upon event < pp2pSend, dest, m> do

!   trigger < sp2pSend, dest, m>;

!   upon event < sp2pDeliver, src, m> do

!   if m ∉ delivered then

!   trigger < pp2pDeliver, src, m>;

!   add m to delivered;

42

Reliable links

!   We shall assume reliable links (also called
perfect) throughout this course (unless
specified otherwise)

!   Roughly speaking, reliable links ensure that
messages exchanged between correct
processes are not lost

43

Overview

!   (1) Why? Motivation
!   (2) Where? Between the network and the

application
!  (3) How? (3.1) Specifications, (3.2)

assumptions, and (3.3) algorithms
!   3.2.1 Processes and links
!   3.2.2 Failure Detection

44

!   A failure detector is a distributed oracle
that provides processes with suspicions about
crashed processes

!   It is implemented using (i.e., it encapsulates)
timing assumptions

!   According to the timing assumptions, the
suspicions can be accurate or not

Failure Detection

45

!   A failure detector module is defined by events
and properties

!   Events

!   Indication: <crash, p>

!   Properties:

!   Completeness

!   Accuracy

Failure Detection

46

Failure Detection

Perfect:
!   Strong Completeness: Eventually, every process that

crashes is permanently suspected by every correct
process

!   Strong Accuracy: No process is suspected before it
crashes

Eventually Perfect:
!   Strong Completeness
!   Eventual Strong Accuracy: Eventually, no correct

process is ever suspected

47

Failure detection

Implementation:
!   (1) Processes periodically exchange heartbeat

messages
!   (2) A process sets a timeout based on worst case

round trip of a message exchange
!   (3) A process suspects another process if it

timeouts that process
!   (4) A process that delivers a message from a

suspected process revises its suspicion and
increases its time-out

48

Timing assumptions

Synchronous:
!   Processing: the time it takes for a process to execute

a step is bounded and known
!   Delays: there is a known upper bound limit on the

time it takes for a message to be received
!   Clocks: the drift between a local clock and the global

real time clock is bounded and known
Eventually Synchronous: the timing

assumptions hold eventually
Asynchronous: no assumption

49

Overview

!   (1) Why? Motivation

!   (2) Where? Between the network and
the application

!  (3) How? (3.1) Specifications, (3.2)
assumptions, and (3.3) algorithms

50

Algorithms
modules of a process

request (deliver)

indication

request (deliver)

indication

request (deliver)

indication

51

Algorithms

p1

p2

p3

m1

m2

m3

52

Algorithms
p1

p2

p3

m1

m2

crash

53

For every abstraction

!   (A) We assume a crash-stop system with
a perfect failure detector (fail-stop)
!   We give algorithms

!   (B) We try to make a weaker assumption
!   We revisit the algorithms

54

Reliable broadcast
Causal order broadcast

Shared memory
Consensus

Total order broadcast
Atomic commit
Leader election

Terminating reliable broadcast

Content of this course

