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Algorithms (History) 

!  M. Al-Khawarizmi ~9th century: 
inventor of the zero, the decimal 
system, Arithmetic and Algebra 

!  A. Turing: all machines are equal  
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What is an algorithm?  

!  An ordered set of elementary instructions  

!  All execute on the same Turing machine 

!  Complexity measures the number of 
instructions (variables)  
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Distributed algorithms 

!  E. Dijkstra (concurrent os)~60’s 
!  L. Lamport: ‘‘a distributed system is one that 

stops your application because a machine you 
have never heard from crashed’’ ~70’s 

!  J. Gray (transactions) ~70’s 
!  N. Lynch (consensus) ~80’s  
!  Birman, Schneider, Toueg – Cornell – (this 

course) ~90’s  
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In short 

!   We study algorithms for distributed systems:  

!   A new way of thinking about algorithms and their 
complexity  

!   Whereas a centralized algorithm is the soul of a 
computer, a distributed algorithm is the soul of a 
society of computers 
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Important 

•   This course is complementary to the course 
(concurrent algorithms) 

•  We study here message passing based 
algorithms whereas the other course focuses 
on shared memory based algorithms 
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Overview 

!  (1) Why? Motivation 

!   (2) Where? Between the network and 
the application  

!   (3) How?  (3.1) Specifications, (3.2) 
assumptions, and (3.3) algorithms 
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A distributed system 

A 

B 

C 
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Clients-server 

Client B 

Client A 

Server 
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Multiple servers  
(genuine distribution) 

Server A 

Server B 

Server C 
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Applications 

!  Traffic control 

!  Finances: e-transactions, e-banking, 
stock-exchange 

!  Reservation systems 

!  Pretty much everything on the cloud 
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The optimistic view 

!  Concurrency => speed (load-balancing) 

!  Partial failures => high-availability 
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The pessimistic view 

!  Concurrency (interleaving) => 
incorrectness 

!  Partial failures => incorrectness 
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Distributed algorithms  
(Today: Google) 

!  Hundreds of thousands of machines connected 
!  A Google job involves 2000 machines  
!  10 machines go down per day  
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Overview 

!   (1) Why? Motivation 

!  (2) Where? Between the network and 
the application  

!   (3) How?  (3.1) Specifications, (3.2) 
assumptions, and (3.3) algorithms 
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Distributed systems 
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Distributed systems 

!  The application needs underlying 
services for distributed interaction 

!  The network is not enough 

!  Reliability guarantees (e.g., TCP) are 
only offered for communication 
among pairs of processes, i.e., one-
to-one communication (client-server) 
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Reliable broadcast 
Causal order broadcast 

Shared memory 
Consensus 

Total order broadcast 
Atomic commit 
Leader election 

Terminating reliable broadcast 

Content of this course 
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Reliable distributed services 

!  Example 1: reliable broadcast 

!  Ensure that a message sent to a 
group of processes is received 
(delivered) by all or none 

!  Example 2: atomic commit 

!  Ensure that the processes reach a 
common decision on whether to 
commit or abort a transaction 
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Underlying services 

!   (1): processes (abstracting computers) 

!   (2): channels (abstracting networks) 

!   (3): failure detectors (abstracting time) 
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!  The distributed system is made of a finite 
set of processes: each process models a 
sequential program 

!  Processes are denoted by p1,..pN or p, q, r 
!  Processes have unique identities and know 

each other 

!  Every pair of processes is connected by a 
link through which the processes exchange 
messages 

Processes 
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!   A process executes a step at every tick of its 
local clock: a step consists of  

!  A local computation (local event) and 
message exchanges with other processes 
(global event)  

!   NB. One message is delivered from/sent to a 
process per step 

Processes 
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Processes 

!   The program of a process is made of a finite 
set of modules (or components) organized as 
a software stack 

!   Modules within the same process interact by 
exchanging events 

!   upon event < Event1, att1, att2,..> do  

!   // something 

!   trigger < Event2, att1, att2,..>  
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Modules of a process 

request (deliver) 

indication 

request (deliver) 

indication 

request (deliver) 

indication 
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Overview 

!   (1) Why? Motivation 

!   (2) Where? Between the network and 
the application  

!  (3) How?  (3.1) Specifications, (3.2) 
assumptions, and (3.3) algorithms 
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Approach 

!  Specifications: What is the service? 
i.e., the problem ~ liveness + safety  

!  Assumptions: What is the model, i.e., 
the power of the adversary? 

!  Algorithms: How do we implement the 
service? Where are the bugs (proof)? 
What cost? 
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Overview 

!   (1) Why? Motivation 

!   (2) Where? Between the network and 
the application  

!  (3) How?  (3.1) Specifications, (3.2) 
assumptions, and (3.3) algorithms 
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Liveness and safety 

!  Safety is a property which states that 
nothing bad should happen  

!  Liveness is a property which states 
that something good should happen 
!  Any specification can be expressed in 

terms of liveness and safety 
properties (Lamport and Schneider) 
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Liveness and safety 

!  Example: Tell the truth 

!  Having to say something is liveness 

!  Not lying is safety 
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Specifications 

!  Example 1: reliable broadcast 

!  Ensure that a message sent to a 
group of processes is received by all 
or none 

!  Example 2: atomic commit 

!  Ensure that the processes reach a 
common decision on whether to 
commit or abort a transaction 
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!   (1) Why? Motivation 

!   (2) Where? Between the network and 
the application  

!  (3) How?  (3.1) Specifications, (3.2) 
assumptions, and (3.3) algorithms 

Overview 
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Overview 

!   (1) Why? Motivation 
!   (2) Where? Between the network and the 

application  
!  (3) How?  (3.1) Specifications, (3.2) 

assumptions, and (3.3) algorithms 
!   3.2.1 Assumptions on processes and 

channels 
!   3.2.2 Failure detection 
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Processes 

!  A process either executes the algorithm assigned 
to it (steps) or fails 

!  Two kinds of failures are mainly considered: 

" Omissions: the process omits to send 
messages it is supposed to send (distracted) 

" Arbitrary: the process sends messages it is 
not supposed to send (malicious or Byzantine) 

" Some models in between  



34 

Processes 

!  Crash-stop: a more specific case of 
omissions 
!  A process that omits a message to a 

process, omits all subsequent 
messages to all processes 
(permanent distraction): it crashes 
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Processes 

!   By default, we shall assume a crash-stop 
model throughout this course; that is, unless 
specified otherwise: processes fail only by 
crashing (no recovery) 

!   A correct process is a process that does not 
fail (that does not crash) 
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Processes communicate by message passing 
through communication channels  

Messages are uniquely identified and the message 
identifier includes the sender’s identifier 

Processes/Channels 
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Fair-loss links 

!   FL1. Fair-loss: If a message is sent infinitely 
often by pi to pj , and neither pi or pj crashes, 
then m is delivered infinitely often by pj 

!   FL2. Finite duplication: If a message is sent a 
finite number of times by pi to pj, it is delivered a 
finite number of times by pj 

!  FL3. No creation: No message is delivered unless 
it was sent 
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Stubborn links 

!   SL1. Stubborn delivery:  if a process pi sends a 
message m to a correct process pj, and pi does not 
crash, then pj delivers m an infinite number of times  

!  SL2.   No creation: No message is delivered unless 
it was sent 
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Algorithm (sl) 

!   Implements:  StubbornLinks (sp2p). 

!   Uses:  FairLossLinks (flp2p). 

!   upon event < sp2pSend, dest, m> do  

!   while (true) do  

!    trigger < flp2pSend, dest, m>; 

!   upon event < flp2pDeliver, src, m> do  

!   trigger < sp2pDeliver, src, m>;  
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Reliable (Perfect) links 

!   Properties 

!   PL1. Validity: If pi and pj are correct, 
then every message sent by pi to pj is 
eventually delivered by pj 

!   PL2. No duplication: No message is 
delivered (to a process) more than once 

!   PL3. No creation: No message is 
delivered unless it was sent 
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Algorithm (pl) 

!   Implements:  PerfectLinks (pp2p). 

!   Uses:  StubbornLinks (sp2p). 

!   upon event < Init> do delivered := empy; 

!   upon event < pp2pSend, dest, m> do  

!   trigger < sp2pSend, dest, m>;  

!   upon event < sp2pDeliver, src, m> do  

!    if m ∉ delivered then   

!   trigger < pp2pDeliver, src, m>; 

!   add m to delivered; 
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Reliable links 

!   We shall assume reliable links (also called 
perfect) throughout this course (unless 
specified otherwise) 

!   Roughly speaking, reliable links ensure that 
messages exchanged between correct 
processes are not lost 
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Overview 

!   (1) Why? Motivation 
!   (2) Where? Between the network and the 

application  
!  (3) How?  (3.1) Specifications, (3.2) 

assumptions, and (3.3) algorithms 
!   3.2.1 Processes and links 
!   3.2.2 Failure Detection 
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!   A failure detector is a distributed oracle 
that provides processes with suspicions about 
crashed processes 

!   It is implemented using (i.e., it encapsulates) 
timing assumptions 

!   According to the timing assumptions, the 
suspicions can be accurate or not 

Failure Detection 
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!   A failure detector module is defined by events 
and properties 

!   Events 

!   Indication: <crash, p> 

!   Properties:  

!   Completeness 

!   Accuracy 

Failure Detection 
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Failure Detection 

Perfect:  
!   Strong Completeness: Eventually, every process that 

crashes is permanently suspected by every correct 
process 

!   Strong Accuracy: No process is suspected before it 
crashes 

Eventually Perfect: 
!   Strong Completeness 
!   Eventual Strong Accuracy: Eventually, no correct 

process is ever suspected 
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Failure detection 

Implementation:  
!   (1) Processes periodically exchange heartbeat 

messages 
!   (2) A process sets a timeout based on worst case 

round trip of a message exchange 
!   (3) A process suspects another process if it 

timeouts that process 
!   (4) A process that delivers a message from a 

suspected process revises its suspicion and 
increases its time-out 
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Timing assumptions 

Synchronous:  
!   Processing: the time it takes for a process to execute 

a step is bounded and known 
!   Delays: there is a known upper bound limit on the 

time it takes for a message to be received 
!   Clocks: the drift between a local clock and the global 

real time clock is bounded and known 
Eventually Synchronous: the timing 

assumptions hold eventually 
Asynchronous: no assumption 
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Overview 

!   (1) Why? Motivation 

!   (2) Where? Between the network and 
the application  

!  (3) How?  (3.1) Specifications, (3.2) 
assumptions, and (3.3) algorithms 
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Algorithms  
modules of a process 

request (deliver) 

indication 

request (deliver) 

indication 

request (deliver) 

indication 



51 

Algorithms 

p1 

p2 

p3 

m1 

m2 

m3 
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Algorithms 
p1 

p2 

p3 

m1 

m2 

crash 
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For every abstraction 

!    (A) We assume a crash-stop system with 
a perfect failure detector (fail-stop) 
!   We give algorithms  

!   (B) We try to make a weaker assumption 
!   We revisit the algorithms 
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Reliable broadcast 
Causal order broadcast 

Shared memory 
Consensus 

Total order broadcast 
Atomic commit 
Leader election 

Terminating reliable broadcast 

Content of this course 


