
Byzantine Fault Tolerance
and

Consensus
Dragos-Adrian Seredinschi

lpd.epfl.ch

1

Distributed Systems

Problem

2

Correct
process

General goal:  
Run a distributed algorithm

Problem

2

Correct
process

Arbitrary
failure

General goal:  
Run a distributed algorithm

Recasting the problem

3

Client

ApplicationREQUEST

REPLY

Distributed 
algorithm

Recasting the problem

4

Client

ApplicationREQUEST

REPLY

Distributed 
algorithm

Application requirements:
• High-Availability 

(give a reply to a request)
• Reliability 

(give correct replies)

Boils down to fault-tolerance

Solution
Fault-tolerance basic techniques:

• Agreement = Consensus

• Replication =  
State Machine Replication

In the following we will see…

• PBFT

• Seminal algorithm for  
Byzantine Fault Tolerance

5

Client

ApplicationREQUEST

REPLY

Distributed 
algorithm

PBFT
Practical Byzantine Fault Tolerance

6

OSDI’99

Miguel Castro

Barbara Liskov

Modules

7

Application
State Machine

Replication  
(SMR)

Consensus

Perfect Links
Channels

Modules

7

Application
State Machine

Replication  
(SMR)

Consensus

Perfect Links
Channels

PBFT

Overview

PBFT:

• System model 
— slightly different from what we’ve seen so far

• SMR

• Consensus

8

System model 
Processes

Three types of processes in this algorithm:

• Clients

• n replicas

• one of them is primary

• others are backup

9

…

…
1

2 n3

System model 
Failure model

• Arbitrary (Byzantine) faults

• Clients:
• Any client can be faulty

• Replicas:
• n = 3f + 1
• f faulty (upper bound)

10

….

n=4
f=1

n=7
f=2

System model
Network & crypto

• Assume perfect links

• Direct links between any two processes

• For messages:

• Public-key signatures, message authentication codes

• Avoid spoofing, replays, corruption

• Clients are authenticated

• Can revoke access to faulty clients

11

Overview

PBFT:

• System model 
— slightly different from what we’ve seen so far

• SMR

• Consensus

12

State Machine Replication
(SMR)

• A fault-tolerance technique
• Basic ideas:

• Application = state machine

• Run the application on multiple processes

• Each processes is a faithful replica of the application

• Note: We can ignore the primary/backup distinction in
this example

13

….

….

Process 1 Process n

SMR
in a nutshell

14

S1

S1

S1

All SMR replicas
start from the  

same state (S1)

SMR
in a nutshell

14

S1

S1

S1

a

a

a

S2

S2

S2

All SMR replicas
start from the  

same state (S1)

Transition to 
state (S2) due to  

operation ‘a’

SMR
in a nutshell

14

S1

S1

S1

a

a

a

S2

S2

S2

All SMR replicas
start from the  

same state (S1)

Transition to 
state (S2) due to  

operation ‘a’

a

null

c

SMR
in a nutshell

14

S1

S1

S1

a

a

a

S2

S2

S2

All SMR replicas
start from the  

same state (S1)

Transition to 
state (S2) due to  

operation ‘a’

A faulty
client can

wreak havoc

S2

S3

S4

a

null

c

SMR
in a nutshell

14

S1

S1

S1

a

a

a

S2

S2

S2

All SMR replicas
start from the  

same state (S1)

Transition to 
state (S2) due to  

operation ‘a’

A faulty
client can

wreak havoc

S2

S3

S4

a

null

c

rand()

rand()

rand()

SMR
in a nutshell

14

S1

S1

S1

a

a

a

S2

S2

S2

All SMR replicas
start from the  

same state (S1)

Transition to 
state (S2) due to  

operation ‘a’

A faulty
client can

wreak havoc

S2

S3

S4

a

null

c

Non-determinism
is also harmful

S5

S6

S7

rand()

rand()

rand()

SMR
in a nutshell

14

S1

S1

S1

a

a

a

S2

S2

S2

All SMR replicas
start from the  

same state (S1)

Transition to 
state (S2) due to  

operation ‘a’

A faulty
client can

wreak havoc

S2

S3

S4

a

null

c

Non-determinism
is also harmful

S5

S6

S7

rand()

rand()

rand()

Diverging states!

• Avoid diverging states

• All replicas must:

1. Start in the same state

2. Execute the same sequence of
operations

3. Use only provided 
operation (+parameters), thus  
avoid non-determinism

15

SMR
Requirements

• Avoid diverging states

• All replicas must:

1. Start in the same state

2. Execute the same sequence of
operations

3. Use only provided 
operation (+parameters), thus  
avoid non-determinism

15

SMR
Requirements

Simple

Consensus

Depends on
application

SMR 
in PBFT

• Application = a distributed file system  
— Network File System (NFS)

• Operations = write to a file, delete, etc.
• Primary/backup distinction is relevant

16

NFS
State Machine

Replication  
(SMR)

Consensus

Perfect Links
Channels

S1

…
S1

SMR 
in PBFT

• Application = a distributed file system  
— Network File System (NFS)

• Operations = write to a file, delete, etc.
• Primary/backup distinction is relevant

16

NFS
State Machine

Replication  
(SMR)

Consensus

Perfect Links
Channels

S1

…
S1

The replicated state
is a file system

17

SMR 
in PBFT

REQUEST

Client contacts  
the primary 

with a request

17

SMR 
in PBFT

REQUEST

Client contacts  
the primary 

with a request

Co
ns

en
su

s

All replicas agree
on the request

& execute it

17

SMR 
in PBFT

REQUEST

Client contacts  
the primary 

with a request

Co
ns

en
su

s

REPLY

REPLY

REPLY

Client gets the 
same reply from 

all correct replicas

REPLY

All replicas agree
on the request

& execute it

18

SMR 
in PBFT

REQUEST

Client contacts  
the primary 

with a request

REPLY

REPLY

Redundancy in Replies
=

Cope with failures

REPLY

Lost

REPLY

All replicas agree
on the request

& execute it

Co
ns

en
su

s

18

SMR 
in PBFT

REQUEST

Client contacts  
the primary 

with a request

REPLY

REPLY

Redundancy in Replies
=

Cope with failures

REPLY

Lost

REPLYREPLY

All replicas agree
on the request

& execute it

Co
ns

en
su

s

Overview

PBFT:

• System model 
— slightly different from what we’ve seen so far

• SMR

• Consensus

19

Consensus
• The core for many algorithms, including:
• TRB, Group membership, View synchronous  

b-cast, State machine replication

20

Traditionally

• Processes propose
values

• Agree on a proposed
value

In PBFT:
• Clients propose request
• Primary multicasts one

request to backup replicas
• Replicas accept the

request

In
st

an
ce

In
st

an
ce

21

• We’ll assume one client
• Proposals = requests for 

application operations

• Assume:

• n = 4, f = 1

• The faulty replica does not cooperate

• Concurrent requests:
• Consensus to agree on a  

sequential execution of requests

Consensus
in PBFT

REQUEST

REQUEST

REQUEST

Algorithm ideas:

• Client sends requests to the primary replica

• Execute a sequence of consensus instances:

• Each instance is dedicated to a request

• Instances (and therefore requests) are sequentially ordered by the
primary

• Backup replicas adopt requests from the primary in the imposed
order

Properties: Validity, Agreement, Termination, Integrity

22

Consensus
in PBFT

Consensus
in PBFT

23

REQUEST

Co
ns

en
su

s

Consensus
in PBFT

23

REQUEST

Co
ns

en
su

s
A three-phase protocol

Consensus instance
= three-phase protocol

24

REQUEST

Consensus instance
= three-phase protocol

25

REQUEST

Consensus instance
= three-phase protocol

26

REQUEST

Consensus instance
= three-phase protocol

27

REQUEST

Consensus instance
= three-phase protocol

28

REQUEST REPLY

Consensus
Corner case

What if the primary is faulty, e.g.  
does not multicast the request to the backups?

• View change protocol: primary replaced by one of the backups

• Idea:

• Replicas are numbered 1 … n

• In view v, the replica p is the primary, where 
p = v mod n

29

Practical BFT
“Reasonable overhead”

• Does not assume synchrony

• Some clever optimizations:

• MD5 replaces digital signatures

• Message digests

• Read-only requests, tentative execution

30

PBFT
NFS

3%

• Castro, M., & Liskov, B. (1999). Practical Byzantine
fault tolerance. OSDI, (February), 1–14. Available
at: http://dl.acm.org/citation.cfm?id=296806.296824

• Castro, M. (2011). Practical Consensus. Microsoft
Research Cambridge. Available at:  
http://msrvideo.vo.msecnd.net/rmcvideos/167097/dl/167097.pdf

Further reading

31

http://dl.acm.org/citation.cfm?id=296806.296824
http://msrvideo.vo.msecnd.net/rmcvideos/167097/dl/167097.pdf

