Distributed Systems

Byzantine rault lolerance
ana
Consensus

Dragos-Adrian Seredinschi
Ipd.eptl.ch

Correct
DrOCESS

General goal:
Run a distributed algorithm

Correct
DrOCESS

Arbitrary
failure

General goal:
Run a distributed algorithm

Recasting the problem

Distributed — 2>

o
| .tl I
=
= >
=
= =
S
N Z
| ~

Recasting the problem

Client

Application

Application requirements:

* High-Availability
(give a reply to a request)

* Reliability
(give correct replies)

Distributed — >

Boils down to fault-tolerance

Solution

Fault-tolerance basic techniques:

Client

Application

* Agreement = Consensus

* Replication =
State Machine Replication

Distributed
algorithm

In the following we will see...
e PBFT

e Seminal algorithm for
Byzantine Fault Tolerance

PBFT

Practical Byzantine Fault Tolerance
OSDI'99

m Miguel Castro

Barbara Liskov

Moaules

Application

State Machine
Replication
(SMR)

Consensus

Pertect Links

Channels

v

Moaules

—

Application

te Machine
Replication
(SMR)

7

— -

N_. Consensus

— —

Pertect Links

Channels

Overview

PBFT

- System model
— slightly different from what we've seen so far

 SMR

e Consensus

System model

Processes

Three types of processes in this algorithm:
.+ Clients o0 ©
* nreplicas

* one of them Is primary Q

:
* others are backup Q O Q
2

3 N

System model

Fallure model

e Arbitrary (Byzantine) faults

* Clients: g G G
* Any client can be faulty
n=4
* Replicas: O®0O0 =1
e N=3f+1 OO N=/

e ffaulty (upper bound) OOO =2

10

System model
Network & crypto

Assume pertect links
Direct links between any two processes
For messages:

* Public-key signhatures, message authentication codes

* Avoid spoofing, replays, corruption
Clients are authenticated

« Can revoke access to faulty clients

11

Overview

PBFT

o System model
— slightly different from what we've seen so far

- SMR

e Consensus

12

State Machine Replication

* A fault-tolerance technique a\@é &@j
* Basic ideas: l l
* Application = state machine Process 1 Process n

* Run the application on multiple processes
 Each processes is a faithful replica of the application

* Note: We can ignore the primary/backup distinction in
this example

13

SMR

IN a nutshell

)&
)&
\P,

All SMR replicas
start from the
same state (S1)

14

SMR

IN a nutshell

ol

v

‘o

e
®
)&
®

All SMR replicasé Transition to

start from the

. state (S2) due to

same state (51) : operation ‘@’

14

SMR

in a nutshell

i

.
% *{@ '
'3 5@/é

All SMR replicas: Transitionto
start from the : state (S2) due to
same state (51) : operation ‘@’

14

SMR

N a nutshell

SN w e

Wall
R T

All SMR replicas: ~ Transitonto @ Afaulty
start from the : state (S2) due to : client can
same state (S1): operation‘a’ : Wreakhavoc

14

SMR

N a nutshell

&\?@77‘\\% e

‘o

O
3

o %
& Lo =

All SMR replicas: ~ Transitonto @ Afaulty
start from the : state (S2) due to : client can
same state (S1): operation‘a’ : Wreakhavoc

14

SMR

|n a nutsheH

o
AT

< :\ki e mh

o), 5@/: 19 WMo

All SMR replicas: Transitionto A taulty Non-determinism
start from the : state (S2) dueto : clientcan < Al harmful
same state (S1): operation‘a’ : Wreak havoc 'S IS0 harmid

14

SMR

|n a nutsheH

o
AT

< :\ki e mh

o), 5@/: ' o 5“‘9

All SMR replicas: Transitionto A taulty Non-determinism
start from the : state (S2) dueto : clientcan e also harmiu
same state (S1): operation‘a’ : Wwreakhavoc i 1S@SO arrrB

Diverging states!

14

SMR

Requirements

 Avoid diverging states

o All replicas must:

1.

2.

Start in the same state

Execute the same sequence of
operations

Use only provided
operation (+parameters), thus
avold non-determinism

15

SMR

Requirements

 Avoid diverging states

o All replicas must:

1.

2.

-
Start in the same state e Simple
Execute the same sequence of

operations B Consensus

Use only provided
operation (+parameters), thus Depgndg on
avoid non-determinism «—————— application

15

* Application = a distributed file system

SMR

n PBFT

— Network File System (NFS)

 Operations = write to a file, delete, etc.

* Primary/backup distinction is relevant

)9
\d

16

NFS

State Machine
Replication
(SMR)

Consensus

Perfect Links

Channels

SMR s
N PBFT State Machine
Replication
* Application = a distributed file system (SMR)
— Network File System (NFS) Consensus
« Operations = write to a file, delete, etc. Perfect Links
Channels

* Primary/backup distinction is relevant

root

—~ The replicated state

@ |S a f||e System [min] | (moot| | [rdevi] | (reter] | [momer] | [mior] | [/mediar] | (/mnt)
e (opv) (moot) [ssbins]) [1srv] (nmpr] (s ;az/

t) | winv | (includer] (b | (ssbin] (1cacher] (n0g/] (ispootr) [nmpl

16

SMR

n PBFT

—

O000 @

Client contacts
the primary
with a request

Client contacts All replicas agree
the primary ¢ on the request
with a request & execute it

17

SMR

in PBFT

i/

=/
T

Client contacts : All replicas agree : Client gets the

the primary ¢ ontherequest : same reply from
with a request : & execute it all correct replicas

17

—

O000 @

Client contacts
the primary
with a request

All replicas agree :
on the request
& execute it

18

Redundancy in Replies

Cope with failures

—

@O0 @

Client contacts
the primary
with a request

All replicas agree :
on the request
& execute it

18

Redundancy in Replies

Cope with failures

Overview

PBFT

o System model
— slightly different from what we've seen so far

 SMR

- Consensus

19

Instance

Consensus

* The core for many algorithms, including:

 TRB, Group membership, View synchronous
b-cast, State machine replication

Traditionally

* Processes propose
values

 Agree on a proposed
value

Instance

20

In PBFT:

Clients propose reguest

Primary multicasts one
request to backup replicas

Replicas accept the
request

Consensus
N PBET

e We'll assume one client

e Proposals = requests for
application operations

REQUEST

* Assume REQUEST

e Nn=4,f="1
e The faulty replica does not cooperate

o Concurrent requests:

e Consensus to agree on a
sequential execution of requests

21

Consensus
N PBET

Algorithm ideas:

e Client sends requests to the primary replica

e Execute a sequence of consensus instances:
 Each instance is dedicated to a request

e Instances (and therefore requests) are sequentially ordered by the
primary

o Backup replicas adopt requests from the primary in the imposed
order

Properties: Validity, Agreement, Termination, Integrity

22

® OO0 0@

_

Consensus
N PBET

® OO0 0@

_

Consensus
N PBET

A three-phase protocol

23

® OO0 0@

Consensus instance

= three-phase protocol
;

'ﬁ

® OO0 0 @:

Consensus instance

= three-phase protocol
| Pre-p:epare

® OO0 0 @:

Consensus instance

= three-phase protocol
Preﬁare

® OO0 0 @:

Consensus instance

= three-phase protocol
Cor?\mit |

® OO0 0 @:

Consensus instance

= three-phase protocol
_

Consensus
Corner case

What if the primary is faulty, e.g.
does not multicast the request to the backups?

* View change protocol: primary replaced by one of the backups
* |dea:
* Replicas are numbered 1 ... n

* |Inview v, the replica p is the primary, where
p =vmodn

29

Practical BF 1

“Reasonable overhead”

* Does not assume synchrony PBFT NFS
 Some clever optimizations:
 MD5 replaces digital signatures

* Message digests

 Read-only requests, tentative execution

30

Further reading

» Castro, M., & Liskov, B. (1999). Practical Byzantine
fault tolerance. OSDI, (February), 1-14. Available
al: http://dl.acm.org/citation.cfm?id=296806.296824

 Castro, M. (2011). Practical Consensus. Microsoft

Research Cambridge. Available at:
http://msrvideo.vo.msecnd.net/rmcvideos/167097/dl/167097.pdf

31

http://dl.acm.org/citation.cfm?id=296806.296824
http://msrvideo.vo.msecnd.net/rmcvideos/167097/dl/167097.pdf

