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Application requirements: 
• High-Availability 

(give a reply to a request) 
• Reliability 

(give correct replies) 

Boils down to fault-tolerance



Solution
Fault-tolerance basic techniques: 

• Agreement = Consensus 

• Replication =  
State Machine Replication 

In the following we will see… 

• PBFT 

• Seminal algorithm for  
Byzantine Fault Tolerance
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PBFT 
Practical Byzantine Fault Tolerance
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Overview

PBFT: 

• System model 
— slightly different from what we’ve seen so far

• SMR 

• Consensus
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System model 
Processes

Three types of processes in this algorithm: 

• Clients 

• n replicas 

• one of them is primary 

• others are backup
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System model 
Failure model

• Arbitrary (Byzantine) faults 

• Clients: 
• Any client can be faulty 

• Replicas: 
• n = 3f + 1 
• f faulty (upper bound)
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System model 
Network & crypto

• Assume perfect links 

• Direct links between any two processes 

• For messages: 

• Public-key signatures, message authentication codes 

• Avoid spoofing, replays, corruption 

• Clients are authenticated 

• Can revoke access to faulty clients 
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Overview

PBFT: 
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State Machine Replication 
(SMR)

• A fault-tolerance technique 
• Basic ideas: 

• Application = state machine 

• Run the application on multiple processes 

• Each processes is a faithful replica of the application 

• Note: We can ignore the primary/backup distinction in 
this example
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• Avoid diverging states 

• All replicas must: 

1. Start in the same state 

2. Execute the same sequence of 
operations 

3. Use only provided 
operation (+parameters), thus  
avoid non-determinism
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SMR 
in PBFT

• Application = a distributed file system  
— Network File System (NFS) 

• Operations = write to a file, delete, etc. 
• Primary/backup distinction is relevant
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Consensus
• The core for many algorithms, including: 
• TRB, Group membership, View synchronous  

b-cast, State machine replication
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Traditionally 

• Processes propose 
values 
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In PBFT: 
• Clients propose request 
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• We’ll assume one client 
• Proposals = requests for 

application operations 

• Assume: 

• n = 4, f = 1 

• The faulty replica does not cooperate 

• Concurrent requests: 
• Consensus to agree on a  

sequential execution of requests

Consensus 
in PBFT

REQUEST

REQUEST

REQUEST



Algorithm ideas: 

• Client sends requests to the primary replica 

• Execute a sequence of consensus instances: 

• Each instance is dedicated to a request 

• Instances (and therefore requests) are sequentially ordered by the 
primary 

• Backup replicas adopt requests from the primary in the imposed 
order 

Properties: Validity, Agreement, Termination, Integrity

22

Consensus 
in PBFT



Consensus 
in PBFT

23

REQUEST

Co
ns

en
su

s



Consensus 
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Consensus instance 
= three-phase protocol
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Consensus 
Corner case

What if the primary is faulty, e.g.  
does not multicast the request to the backups? 

• View change protocol: primary replaced by one of the backups 

• Idea: 

• Replicas are numbered 1 … n 

• In view v, the replica p is the primary, where 
p = v mod n 
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Practical BFT
“Reasonable overhead” 

• Does not assume synchrony 

• Some clever optimizations: 

• MD5 replaces digital signatures 

• Message digests 

• Read-only requests, tentative execution
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PBFT
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Further reading
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