Distributed Systems

Byzantine Fault Tolerance and Consensus

Dragos-Adrian Seredinschi Ipd.epfl.ch

Problem

General goal: Run a distributed algorithm

Problem

General goal: Run a distributed algorithm

Recasting the problem

Recasting the problem

Application requirements:

- High-Availability (give a reply to a request)
- Reliability (give correct replies)

Boils down to fault-tolerance

Solution Fault-tolerance basic techniques: Client • Agreement = Consensus REPLY Application REQUEST **State Machine Replication** Distributed algorithm

In the following we will see...

PBFT \bullet

Replication =

Seminal algorithm for • **Byzantine Fault Tolerance**

PBFT Practical Byzantine Fault Tolerance OSDI'99

Miguel Castro

Barbara Liskov

Modules

Modules

Overview

PBFT:

· System model

- slightly different from what we've seen so far

- SMR
- Consensus

System model Processes

Three types of processes in this algorithm:

• Clients

- n replicas
 - one of them is primary
 - others are <u>backup</u>

System model Failure model

- Arbitrary (Byzantine) faults
- Clients:
 - Any client can be faulty
- Replicas:
 - n = 3f + 1
 - f faulty (upper bound)

e

9

n=4 f=1

n=7

f=2

e

System model Network & crypto

- Assume perfect links
- Direct links between any two processes
- For messages:
 - Public-key signatures, message authentication codes
 - Avoid spoofing, replays, corruption
- Clients are authenticated
 - Can revoke access to faulty clients

Overview

PBFT:

• System model

- slightly different from what we've seen so far

· SMR

• Consensus

State Machine Replication

- A fault-tolerance technique
- Basic ideas:
 - Application = state machine

- Run the application on multiple processes
- Each processes is a faithful replica of the application
- Note: We can ignore the primary/backup distinction in this example

SMR in a nutshell

SMR Requirements

- Avoid diverging states
- All replicas must:
 - 1. Start in the same state
 - 2. Execute the same sequence of operations
 - Use only provided operation (+parameters), thus avoid non-determinism

- Application = a distributed file system
 Network File System (NFS)
- Operations = write to a file, delete, etc.
- Primary/backup distinction is relevant

NFS
State Machine Replication (SMR)
Consensus
Perfect Links
Channels

- Application = a distributed file system
 Network File System (NFS)
- Operations = write to a file, delete, etc.
- Primary/backup distinction is relevant

	NFS
	State Machine Replication (SMR)
	Consensus
-	Perfect Links
	Channels

Overview

PBFT:

• System model

- slightly different from what we've seen so far

- SMR
- · Consensus

Consensus

- The core for many algorithms, including:
- TRB, Group membership, View synchronous b-cast, State machine replication

Traditionally

 Processes propose values

Instance

Agree on a proposed value

In PBFT:

- Clients propose <u>request</u>
- Primary multicasts one request to backup replicas
- Replicas accept the request

nstance

- We'll assume one client
 - <u>Proposals = requests</u> for application operations
- Assume:
 - n = 4, f = 1
 - The faulty replica does not cooperate
- Concurrent requests:
 - <u>Consensus</u> to agree on a sequential execution of requests

Algorithm ideas:

- Client sends requests to the primary replica
- Execute a sequence of consensus instances:
 - Each instance is dedicated to a request
 - Instances (and therefore requests) are sequentially ordered by the primary
 - Backup replicas adopt requests from the primary in the imposed order

Properties: Validity, Agreement, Termination, Integrity

A three-phase protocol

What if the primary is faulty, e.g. does not multicast the request to the backups?

- View change protocol: primary replaced by one of the backups
- Idea:
 - Replicas are numbered 1 ... n
 - In view v, the replica p is the primary, where
 p = v mod n

Practical BFT

"Reasonable overhead"

- Does not assume synchrony
- Some clever optimizations:
 - MD5 replaces digital signatures
 - Message digests
 - Read-only requests, tentative execution

Further reading

- Castro, M., & Liskov, B. (1999). Practical Byzantine fault tolerance. OSDI, (February), 1–14. Available at: <u>http://dl.acm.org/citation.cfm?id=296806.296824</u>
- Castro, M. (2011). Practical Consensus. Microsoft Research Cambridge. Available at: http://msrvideo.vo.msecnd.net/rmcvideos/167097/dl/167097.pdf