### Distributed Systems

# Terminating Reliable Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory



 Like reliable broadcast, terminating reliable broadcast (TRB) is a communication primitive used to disseminate a message among a set of processes in a reliable way

 TRB is however strictly stronger than (uniform) reliable broadcast

#### (Uniform) Reliable Broadcast



## (Uniform) Reliable Broadcast







- Like with reliable broadcast, correct processes in TRB agree on the set of messages they deliver
- *Like* with (uniform) reliable broadcast, every correct process in TRB delivers every message delivered by any process
- Unlike with reliable broadcast, every correct process delivers a message, even if the broadcaster crashes

- The problem is defined for a specific broadcaster process pi = src (known by all processes)
- Process src is supposed to broadcast a message m (distinct from φ)
- The other processes need to deliver m if src is correct but may deliver  $\phi$  if src crashes

- **TRB1.** Integrity: If a process delivers a message m, then either m is  $\phi$  or m was broadcast by src
- **TRB2. Validity:** If the sender *src* is correct and broadcasts a message m, then *src* eventually delivers m
- **TRB3.** (Uniform) Agreement: For any message m, if a correct (any) process delivers m, then every correct process delivers m
- **TRB4. Termination:** Every correct process eventually delivers exactly one message

- Events
  - Request: <trbBroadcast, m>

Indication: <trbDeliver, p, m>

- Properties:
  - TRB1, TRB2, TRB3, TRB4

## Algorithm (trb)

- Implements: trbBroadcast (trb).
- **Uses:** 
  - BestEffortBroadcast (beb).
  - PerfectFailureDetector (P).
  - Consensus(cons).
- upon event < Init > do
  - prop := ⊥;
  - correct := S;

## Algorithm (trb - cont'd)

- **r** upon event < trbBroadcast, m> do
  - trigger < bebBroadcast, m>;

- upon event < crash, src > and (prop = ⊥) do
  - prop :=  $\varphi$ ;

## Algorithm (trb - cont'd)

- **upon event** <br/>bebDeliver, src, m> and (prop =  $\perp$ ) **do** 
  - prop := m;
- upon event (prop ≠⊥) do
  - trigger < Propose, prop>;
- upon event < Decide, decision> do
  - trigger < trbDeliver, src, decision>;

#### Algorithm (trb); src = p2



- Our TRB algorithm uses the perfect failure detector P (i.e., P is sufficient)
- Is P also necessary?
  - Is there an algorithm that implements TRB with a failure detector that is strictky weaker than P? (this would mean that P is not necessary)
  - Is there an algorithm that uses TRB to implement P (this would mean that P is necessary)

- We give an algorithm that implements P using TRB; more precisely, we assume that every process pi can use an infinite number of instances of TRB where pi is the sender src
  - 1. Every process pi keeps on trbBroadcasting messages mi1, mi2, etc
  - 2. If a process pk delivers φi, pk suspects pi
  - NB. The algorithm uses (non-uniform) TRB