Distributed Algorithms 2014 /15
Bonus project

Implementation of Uniform Reliable Broadcast

1 Overview

The goal of this practical project is to implement Uniform Reliable Broadcast
in a system of 5 processes using message passing. Each process broadcasts
messages to other processes, making sure that the properties of Uniform Reliable
Broadcast are satisfied. Messages exchanged between processes may be dropped,
delayed or reordered by the network. The execution of processes may be paused
for an arbitrary amount of time and resumed later. Processes may also fail by
crashing at arbitrary points of their execution.

2 Technical specification

2.1 Processes

One process is represented by one Linux process. Process n is started by exe-
cuting

da_proc n addr_1 port_1 addr_2 port_2 addr_3 port_3 addr_4 port_4 addr._5
port.5 m

where n € {1,2,3,4,5} is the ID of the process, addr_k is the IP address of
process k and port_k is the port on which process k listens for incoming network
packets. The last parameter, m, is the number of messages to be broadcast. A
value of -1 for the parameter m makes the process constantly broadcast messages
until it is stopped. For example, running all processes locally, each broadcasting
10000 messages, they could be started using the following commands

da_proc 1 127.0.0.1 11001 127.0.0.1 11002 127.0.0.1 11003 127.0.0.1
11004 127.0.0.1 11005 10000

da_proc 2 127.0.0.1 11001 127.0.0.1 11002 127.0.0.1 11003 127.0.0.1
11004 127.0.0.1 11005 10000

etc.

A process performs all necessary initialization tasks on startup, but it does



not automatically start broadcasting messages. This enables all processes to
start and initialize. A process only starts broadcasting messages after receiving
the USRI signal.

A process that receives a TERM or INT signal must immediately stop its
execution with the exception of writing to an output log file (see Section 2.3).
In particular, it must not send or handle any received network packets. This is
used to simulate process crashes. You can assume that only a minority (i.e. at
most two) processes crash in one execution.

2.2 Messages

Inter-process point-to-point messages (at the low level) must be carried exclu-
sively by UDP packets in their most basic form, not utilizing any additional
features (e.g. any form of feedback about packet delivery) provided by the
network stack, the operating system or external libraries. Everything must be
implemented on top of these low-level point to point messages.

The application messages (i.e. those broadcast by processes) are numbered
sequentially at each process, starting from 1. Thus, each process broadcasts
messages 1 tom. The data carried by an application message is only the sequence
number of that message.

2.3 Output format

The output of each process is a text file. For process n, the text file is named
da_procn.out and contains a log of events. Each event is represented by one
line of the output file, terminated by a Unix-style line break (’\n’). There are
two types of events to be logged:

e broadcast of application message, using the format
b seq.nr
where seq_nr is the sequence number of the message

e delivery of application message, using the format
d sender seq.nr
where sender is the number of the process that broadcast the message
and seq_nr is the sequence number of the message.

An example of the content of an output file:

o QT T o
BN WN e
N =

Note: The most straight-forward way of logging the output is to append a
line to the output file on every broadcast or delivery event. However, this may
harm the performance of the application. You might consider more sophisticated
logging approaches. Also note that even a crashed process needs to output the
sequence of events that occurred before the crash. You can assume that a



process crash will be simulated only by the TERM or INT signals. Remember
that writing to files is the only action we allow a process to do after receiving a
TERM or INT signal.

3 Compilation

All submitted applications will be tested using Ubuntu 14.04 running on a 64-
bit architecture. The submission has to contain all sources of the application.
All submitted files are to be placed in one folder, such that executing make in
that folder produces all necessary executables (at least da_proc, which will be
called by the testing scripts).

If a language other than C/C++ or Java is used, please indicate packages
that need to be installed on the system in a file README.TXT.

4 Template

A simple C template is provided that shows a possible high-level structure of
the application. The file da_proc.c contains a simple code skeleton that may
serve as a starting point for developing the application.

Two shell scripts are provided: test_correctness and test_performance.
They demonstrate how approximately the correctness and performance, respec-
tively, will be tested. You may extend or modify these scripts to test your own
application. In particular, no code is yet provided to evaluate the correctness
of the output files.

5 Testing and grading

The submitted application will be first tested for correctness under various
conditions (packet loss, reordering, delays, simulated asynchrony of processes,
crashes, etc...).

If it passes all correctness tests (i.e. if the resulting output logs are con-
sistent with the definition of Uniform Reliable Broadcast), it will be tested for
throughput, i.e. the total number of messages delivered by all processes per sec-
ond. When testing throughput, no artificial network artifacts (such as packet
loss or reordering) or process delays/crashes will be simulated.

The authors of the five fastest (in terms of throughput) applications will be
rewarded with an increase of their final course grade' by 0.5.

6 Cooperation

This project is meant to be completed individually. Copying of other students’
solutions is prohibited. You are free to discuss the projects with others, but the
submitted source codes must be your own work. Multiple copies of the same
code will be disregarded without investigating which is the “original” and which
is the “copy”.

1Does not apply for a final course grade of 6.



