
Distributed Algorithms, Final Exam Solution

January 2016

1



Part I

Broadcast (12 points)

Answer the following questions in the provided spaces only.

Question 1 (5x1 points)

Which of the following properties are safety properties and which are liveness?
Mark an “S” or “L” next to each property clearly with a one-line explanation.

1. For any message m1 delivered by a process p1, if there exists another
process p2 that delivered m1 and then delivered a message m2, then p1
also delivers m2.
Explanation:

2. For every pair of processes p1 and p2 that deliver a message m1, if p1
delivers a message m2 before delivering m1, then p2 also delivers m2 before
delivering m1.
Explanation:

3. Every process that crashes is eventually detected.
Explanation:

4. No process is detected before it crashes.
Explanation:

5. No two processes deliver the same message.
Explanation:

2



Question 2 (3x1 points)

Give a brief explanation of the properties for each of the following abstractions.
Note: The notation for each abstraction will be used in Questions 3 and 4.

1. Causal broadcast (Notation: C)
Answer :

2. Total order broadcast (Notation: T)
Answer :

3. Uniform reliable broadcast (Notation: U)
Answer :

3



Question 3 (2 points)

Consider the broadcast executions shown below. Which properties does it sat-
isfy? Use the notations from Question 2. (Choose only a single option, no
explanation required.)

1. C

2. T

3. U

4. C & T

5. T & U

6. C & U

7. C & T & U

8. None of the above.

Answer:

4



Question 4 (2 points)

Consider the broadcast executions shown below. Which properties does it sat-
isfy? (Choose only a single option, no explanation required.)

1. C

2. T

3. U

4. C & T

5. T & U

6. C & U

7. C & T & U

8. None of the above.

Answer:

5



Part II

Consensus, NBAC, TRB, GM
(15 points)

Question 1 (5x2 points)

Indicate which sentence is true and which is false with a T and F about three
different consensus algorithms, respectively. Explain your answer.

Algorithm I (nonuniform consensus with P): The processes exchange and
update proposals in rounds and decide on the value of the non-suspected process
with the smallest id.

Algorithm II (uniform consensus with P): The processes exchange and up-
date proposal in rounds, and decide after n rounds.

Algorithm III (uniform consensus with majority): The processes alternate
in the role of a coordinator until one of them succeeds in imposing a decision.

1. Algorithm I can satisfy uniform consensus if we use Uniform Reliable
Broadcast instead of Best Effort Broadcast.

2. In algorithm II, the decided value is proposed by the correct process with
lowest ID.

3. Using a �P in algorithm II does not violate Agreement property but Ter-
mination.

4. In algorithm III, if pi is leader and decides, the decided value is actually
proposed by pi.

5. Algorithm III finishes in at least N rounds because a process processes its
value in a round only if it is the leader in that round.

6



7



Question 2 (4x0.5 point)

Explain the difference between each of the following pairs of abstractions in
terms of their respective properties.

1. Consensus and Non Blocking Atomic Commit (NBAC).

2. Reliable Broadcast and Terminating Reliable Broadcast.

3. Group Membership and perfect failure detector (P).

4. View Synchrony and uniform view Synchrony.

8



Question 3 (3x1 point)

Each of the below executions represents a NBAC abstraction implemented using
Uniform Consensus. All the processes propose 1 in the beginning. Write all the
possible values (0, 1, or 0/1) for a, b, c and d in each execution. (⊗ shows the
sender is detected to have crashed and the message is lost.)

1.

2.

3.

9



Part III

Process Failures and Shared
Memory (13 points)

Question 1. Failures and process majorities.
(2x3 points)

Consider the fail-silent system model, i.e., where processes may fail by crashing,
and the failure detection cannot be detected, so no failure detector can be used.

1. Does any implementation of a regular register require a majority of correct
processes in this case? Explain your answer.

2. Now suppose an eventually perfect failure detector �P can be used – is a
correct majority still required? Explain your answer.

10



Question 2. Single-choice statements.
(5x0.5 points)

Mark each of the following statements with either T, if the statement is true, or
with F, if that statement is false. No explanation is required.

1. Consider any distributed algorithm running in a system of n total pro-
cesses. The algorithm does not make use of any failure detector, thus this
system must comprise at least n = 2 · f + 1 processes in order to tolerate
a predefined subset of f processes crashing.

2. The Uniform Reliable Broadcast abstraction ensures that, despite a pro-
cess crashing while it broadcasts a message m, the correct processes still
eventually deliver m.

3. A regular register execution where no crashes occur is equivalent with an
atomic register execution.

4. Consider a Reliable Broadcast algorithm. If all sending processes are
assumed to be correct, then this algorithm actually satisfies the Uniform
variant of Agreement.

5. If sending processes in a Causal Broadcast algorithm are assumed to be
correct, then this algorithm actually satisfies the Uniform Causal Broad-
cast specification.

11



Question 3. A regular register array.
(4.5 points)

Traditional registers, as defined in the class, are meant to store one single object
(e.g., a value). A register array, in contrast, is able to store multiple objects.

We consider a regular register array algorithm A which relies on m un-
derlying regular registers, [R0, ..., Rm−1]. Each underlying register stores an
object. We assume that all objects have the form of 〈keyi/valuei〉 tuples, with
i ∈ {0, ..,m − 1}. Thus, each object is uniquely associated with one of the
underlying registers, such that object with key keyi is associated with register
Ri.

Additionally, we require that A runs on N processes, p0, .., pN−1, where
N = m ·2. To ensure reliability, this algorithm guarantees that every underlying
register is replicated at two processes, as follows. Processes are grouped in pairs,
{p0, p1}, {p2, p3}, ..., {pN−2, pN−1}; and each process pair replicates one of the
registers, such that the first pair of processes handles (i.e., replicates) register
R0, the second pair handles register R1, and so on.

For handling any read or write operation on a key keyi, a process either
triggers that operation on its underlying register (if keyi is associated to its
underlying register), or it forwards the operation to one of the two processes
handling the register associated with keyi.

The specification of a regular register array is as follows:
Name: Regular register array.
Properties: Same as properties Termination and Validity of regular registers.
Requests:

read(ki) → vi,
write(ki, vi), where ki is they key of the object, and vi is the value.

Give an implementation of A, assuming that the m underlying regular registers
are already provided. Algorithm 1 provides a skeleton for A.

Algorithm 1 A regular register array.
1: Implements:
2: Regular register array (A)

3: Uses:
4: RegularRegister (rri)

5: procedure 〈read | ki〉 at process px do
6: ???

7: procedure 〈write | ki, v〉 at process px do
8: ??

12



13



Part IV

Population Protocols and
Self-Stabilization (15 points)

Throughout this part, we will use the following fairness assumption:

Definition 1 (Fairness). An infinite execution E is fair iff, for every configu-
ration C occurring infinitely often in E, for every possible transition C → C ′,
C ′ also occurs infinitely often in E.

Unless stated otherwise, all infinite executions in this part are assumed to
be fair.

Question 1 (3 points)

Consider a population of n agents. Every two agents can meet. We define
Q = {◦, •}, and the following protocols:

A :


•, • → •, ◦
•, ◦ → ◦, •
◦, • → •, ◦
◦, ◦ → ◦, ◦

B :


•, • → •, •
•, ◦ → •, •
◦, • → •, •
◦, ◦ → ◦, ◦

C :


•, • → ◦, ◦
•, ◦ → ◦, •
◦, • → •, ◦
◦, ◦ → ◦, ◦

D :


•, • → ◦, ◦
•, ◦ → •, •
◦, • → •, ◦
◦, ◦ → •, ◦

For each predicate below, indicate the (possibly empty) list of protocols
which satisfy the predicate.

1. If all the agents start with the initial state ◦, then all the agents eventually
have permanently the same state ◦.

2. If all the agents start with the initial state •, then all the agents eventually
have permanently the same state ◦.

3. Eventually, there is always exactly one agent in state •.

4. If all agents start with the initial state •, and if n is odd, then eventually,
there is always exactly one agent in state •.

5. The number of agents in state • does not increase along the execution.

6. For any 0 ≤ k ≤ n, in any suffix of the execution, there is eventually at
least k agents in state •.

14



Question 2 (3 points)

Consider a population of n agents. The possibilities of interactions between
the agents are summed up as a graph G with n vertices. Each edge e = (x, y)
represents a possible interaction where x is the initiator, and y is the responder.
It is assumed that (x, y) is an edge iff (y, x) is an edge (the graph is bidirectional).

Consider the protocol with state space {◦, •}:

U :


•, • → •, ◦
•, ◦ → •, ◦
◦, • → ◦, •
◦, ◦ → ◦, ◦

It is assumed that all the agents start in the same initial state •.

1. Show that, eventually, the state of every agent p remains constant, equal
to, say, γ(p).

2. Show that the set I of agents p such that γ(p) = • forms an independent
set in G, i.e, no two agents in I are neighbours in G.

3. Show that there exists a graph G, and a fair execution of U on G such
that the corresponding set I is not a maximum independent set, i.e., there
exists an independent set K in G of size strictly greater than the size of
I.

Question 3 (4 points)

The leader election problem in the context of population protocols is specified
as follows. The state of each agent comprises an output flag which indicates
whether the agent is currently a leader (flag set to •), or a non-leader (flag
set to ◦). The specification of leader election (LE) requires that, in any (fair)
execution, eventually there is a unique agent which permanently outputs •,
whereas the other agents permanently output ◦.

We study LE over the family K of complete (bidirectional) graphs, i.e., the
graphs in which any two agents can interact.

1. Consider the protocol U from Question 2. Show that, for any graph G ∈ K,
any fair execution in which the agents all start in the same initial state •,
solves LE.

We now proceed to show that no single population protocol can solve LE
over the whole graph family K in a self-stabilizing way. Recall that a self-
stabilizing protocol is required to solve the problem at hand whatever the initial
configuration is. We prove the claim by contradiction. Assume there exists a
protocol V such that, for any graph G ∈ K, any fair execution (starting from
an arbitrary configuration), solves LE.

15



Figure 1: Oriented ring - Agents with • hold a token.

2. Consider a (sufficiently large) graph G ∈ K, and any fair execution E of V
on G. Show that there exists a configuration C occurring infinitely often
in E, and a strict subgraph H of G such that all agents from H output ◦
in C, and H ∈ K.

3. Explain why there exists a possible sequence C → C1 → · · · → C ′ of
transitions between configurations on G such that some agent from H
outputs • in C ′.

4. Derive a contradiction.

Question 4 (5 points)

Consider an oriented ring R = {0, 1, . . . , n − 1} as in Figure 1 with n an odd
integer. The orientation means that an agent x is an initiator in some interaction
iff the responder is agent x+ 1 mod n.

We define a protocol W, with state space Z/2 = {0, 1} (the integers modulo
2), by the following rules:

W : ∀a, b ∈ Z/2, a, b→ a, a+ 1

Let C be a configuration. We say that agent x holds a token in configuration
C if agent x and agent x+1 (modulo n) have the same state in C, i.e., C(x+1) =
C(x).

1. Let C0 be an arbitrary initial configuration. Show that, in any fair execu-
tion starting from C0, eventually, there is always exactly one token present
in the system.

2. Show moreover that every agent holds the token infinitely often.

In other words, we have just shown that W is a self-stabilizing solution to the
problem of token circulation.

1. Adapt the protocol to the case where the size n of the ring is only assumed
to not be a multiple of 3. Generalize.

16



Appendix

For the reader’s convenience, we recall here some basic formal definitions about
population protocols. A graph is a couple G = (GV , GE) where GV is a set of
vertices (representing the agents of the population), and GE ⊆ GV × GV is a
set of edges (representing the possible interactions between the agents). The
graph is bidirectional when: (x, y) is an edge iff (y, x) is an edge. The edge
(x, y) represents the interaction in which x plays the role of the initiator, and y
the role of the responder.

A protocol is a tuple A = (Q, δ) where Q is a finite set (the state space),
and δ : Q×Q → Q×Q is the transition function. The transition function is to
be thought as a finite set of rules p, q → p′, q′. Such a transition means that, if
the initiator (resp. responder) is in state p (resp. q), then after the interaction,
the state of the initiator (resp. responder) becomes p′ (resp. q′).

A configuration C of A on G is map that assigns a state C(x) to each agent x

in G. Given an edge (x, y) in G, and two configurations C,C ′, we write C
x,y−−→ C ′

when, for all agent z 6∈ {x, y}, C(z) = C ′(z), and C(x), C(y) → C ′(x), C ′(y) is
a rule of the protocol. Intuitively, this relation means that C ′ is obtained from

C by activating the interaction (x, y). We write C → C ′ if C
x,y−−→ C ′ for some

edge (x, y) in G.
An execution is a (finite or infinite) sequence C1 → C2 → . . . of transitions

between configurations.

17


