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Question:  
What do Distributed Systems 
have in common with Onions?
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Question:  
What do Distributed Systems 
have in common with Onions?

Answer: 
1. Layering 
2. Abstraction 
3. They make you cry

Focus of today



Broadcast 
(we will investigate different properties..) 

1.CAMIPRO-Bitcoin 
•The canonical Bitcoin design


•Uses gossip (best-effort broadcast)


•Relies heavily on crypto — no time to cover that


•We will not discuss the canonical design 

• Instead, we will design our own version of Bitcoin 

•Optimized for CAMIPRO

Let’s design some applications
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[BONUS PROJECT]
Causal Broadcast 
1.S4: Storage for Social Networks 

• A simplified version of Twitter
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2.Make banks obsolete
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CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF


2.Make banks obsolete

Conceptual goals: IN	PRACTICE
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• Ledger

Main concepts

Replicated

• Transaction

• Node

Let’s see how they all fit together..

“Alice gives some money to Bob”

??
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High-level interactions

Recognise any abstractions?
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High-level interactions
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High-level interactions

BROADCAST

What kind of broadcast?

9

PROPERTIES 
(guarantees)

PERFORMANCE



of a cube
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Analogy 
(not formal)

of a cube

of broadcast

Reliability
Uniformity Causality Ordering
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Do we need 
Reliability?

• Consider the following: 
• User A starts 
• Use best-effort broadcast 

• Validity + !Duplication + !Creation 
• “the burden of reliability is on the sender” 
• Lacks Agreement ⇒ Nodes diverge

TX1
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Do we need 
Uniformity?

• Consider the following: 
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• Use regular reliable broadcast 
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TX1

“Uniformity is important if  
nodes interact with the external world”

12

TX1

TX1

What if User B observes 
TX1 before the nodes 

crash?

PROPERTIES



• Consider the following: 
• User A starts         and  
• Use uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes  

• All nodes deliver both TX, but the order may differ

TX1

13
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TX1 TX2
TX1 TX2

TX1 TX2
TX1TX2

Do we need 
Causality? 

(partial ordering)
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What if         depends on  
money from        ?

• Consider the following: 
• User A starts         and  
• Use uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes  

• All nodes deliver both TX, but the order may differ

TX1
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TX1 TX2
TX1 TX2

TX1 TX2
TX1TX2
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• Consider the following: 
• User A starts 
• User B starts  
• Use causal-order uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs 

• All nodes deliver both TX, but the order may differ

Do we need 
(Total) Ordering?

TX1
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TX1 TX2
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TX2 TX1
TX1TX2

No dependency 
among these two

PROPERTIES



What if        and 
      are not commutative?

• Consider the following: 
• User A starts 
• User B starts  
• Use causal-order uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs 

• All nodes deliver both TX, but the order may differ

Do we need 
(Total) Ordering?

TX1
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TX2

TX2 TX1 TX2

TX1 TX2
TX2 TX1

TX2 TX1
TX1TX2

TX1

No dependency 
among these two

PROPERTIES
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Commutativity  
counter-example

100.-
CHF

150.- 
CHF

TX1: 
+50.- CHF

TX2: 
+10%

165.- 
CHF

100.-
CHF

110.- 
CHF

TX1: 
+50.- CHF

TX2: 
+10%

160.- 
CHF
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• Reliability 
• Sender crashes 
• Agreement 

• Uniformity 
• Again, crashes 
• Interaction with outside world 

• Causality 
• Partial order 
• Dependencies among TXs 

• Total order 
• Commutativity
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All properties are desirable
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PERFORMANCE

CANONICAL	
BITCOIN

CAMIPRO	
BITCOIN

• Best-effort broadcast

• Optimized for Internet (WAN)

• TX~10 minutes

AN INFORMAL COMPARISON…

• Bitcoin-Broadcast

• Optimized for small network (EPFL 

LAN)

• TX~1second (back of the envelope)

• Acceptable latency & throughput

¢

How useful would that be?

(in the lunch queue)



Specification



Module: 

Name: CAMIPRO-Bitcoin, instance cbit


Properties: 

• RB1, RB2, RB3, RB4 

• Causal Order (CO)  

• Total order (TO)

Specification

What’s left 
????

¢



Events: 

Request: 〈cbit, Start | TX〉: 
  Attempts to commit TX 

Indication: 〈cbit, Status | TX, s〉:  
  Indicates the status s∈{“Abort”,“Commit”} of TX

Module: 

Name: CAMIPRO-Bitcoin, instance cbit


Properties: 

• RB1, RB2, RB3, RB4 

• Causal Order (CO)  

• Total order (TO)

Specification

18
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CAMIPRO-Bitcoin

User

Request Indication



S4:  
(Student’s) Simple Storage 

Service 

Overview: 

1.Setup & System model 

2.Operations 

3.Goals 

4.Technicalities 

5.One last look at causal consistency

Causally-consistent storage for social networks
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[BONUS PROJECT]



Setup: 

•Users 
 
 

•Storage replicas 
(Nodes) 
 
 

•Objects: stored on replicas

S4 — System model

20

0
2

1 n…

U1
…..

key, value

A, 0

B, 1

C, 9
MSGx, hello

tweetY, BYE

U2 U?



S4 — Operations
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1 2

PUT 
tweet-U1, messageX

⊥ 

GET 
tweet-U1 messageX 

PUT GET

BROADCAST

U1 U2



Goals: 

1.Reliability 

•Three replicas 

•Communicate through  
message-passing 

2.Consistency 

•We want to use it in the Internet (WAN) 
• (Unlike CAMIPRO-Bitcoin, which was optimized for the EPFL network) 
• Can’t afford total-order, too expensive! 

•Causal consistency

S4 — Goals

22

0

2

1CAUSAL 
BROADCAST



Technicalities
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Nodes: 
• Each node is a Linux process 
• Contains:  

• A storage engine 
• A causal-broadcast 

implementation (crb)

0
A, 0

B, 1….

St
or

ag
e 

en
gi

ne

GET 
A

PUT 
A, 0

CRB: 
Request: 〈CRB, BROADCAST | {A, 0}〉 
Indication:〈CRB, DELIVER | P, {A, 0}〉
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Node 0: Address+Port

Node 1: Address+Port

Node 2: Address+Port

input file
ID∈{0,1,2}

Nodes: 
• Each node is a Linux process 
• Contains:  

• A storage engine 
• A causal-broadcast 

implementation (crb)

0
A, 0

B, 1….

St
or

ag
e 

en
gi

ne

GET 
A

PUT 
A, 0

CRB: 
Request: 〈CRB, BROADCAST | {A, 0}〉 
Indication:〈CRB, DELIVER | P, {A, 0}〉

s4 addr-0 port-0 addr-1 port-1 addr-2 port-2 n f

We start a process by calling:



To start all nodes, 
we execute the commands: 

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input 
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 1 1.input 
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 2 2.input

Technicalities

24



To start all nodes, 
we execute the commands: 

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input 
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 1 1.input 
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 2 2.input

Technicalities

24

input files
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INPUT FILES,  
OUTPUT FILES AND  
SIGNALS

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input 

For each line in input file: 
1. execute request 
2. write to output file

Waiting for  
signal

INT 
received 

STOP 
received 

KILL 
received 

CONT 
received 

Waiting for  
signal

Start Stop
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OPERATIONS — GET

•Translates to a local read 
operation 

•Directly from the Storage engine 

•Write the read value in the 
output file 

•No need to contact the other 
nodes

0

A, 0

B, 1….

St
or

ag
e 

en
gi

ne

GET 
A A, 0

read(A) returns
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OPERATIONS — PUT

PUT 
A, 0

•Translates to a causal-order 
(crb) broadcast request 

•Use the algorithm from the 
class 

•No need to write anything (⊥) 
in the output file

〈CRB, BROADCAST | {A, 0}〉

0

2 1

Technicalities
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OPERATIONS — PUT

PUT 
A, 0

•Translates to a causal-order 
(crb) broadcast request 

•Use the algorithm from the 
class 

•No need to write anything (⊥) 
in the output file

〈CRB, BROADCAST | {A, 0}〉

0

2 1

〈CRB, DELIVER | P, {A, 0}〉

What happens when a node delivers a message?

Technicalities
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OPERATIONS 

•Triggers an update in the 
storage engine

0

2 1

〈CRB, DELIVER | P, {A, 0}〉

Technicalities

〈CRB, DELIVER | P, {A, 0}〉

A, 0

B, 1….

write(A,0)
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OPERATIONS 

•Triggers an update in the 
storage engine

0

2 1

〈CRB, DELIVER | P, {A, 0}〉

Technicalities

〈CRB, DELIVER | P, {A, 0}〉

A, 0

B, 1….

write(A,0)

Now let’s put all the pieces together…
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OVERVIEW OF A NODE

0

Technicalities

A, 0

B, 1….

St
or

ag
e 

en
gi

ne
GET 

A
PUT 
A, 5

CRB 

2 1
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B, 1….

St
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0

Technicalities

〈CRB, DELIVER | P, {A, 5}〉

write(A,5)

A, 0

B, 1….

St
or
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GET 

A

read(A)
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OVERVIEW OF A NODE

0

Technicalities

〈CRB, DELIVER | P, {A, 5}〉

write(A,5)

B, 1….

St
or

ag
e 

en
gi

ne
GET 

A

read(A)

A, 0

returns

PUT 
A, 5

〈CRB, BROADCAST | {A, 5}〉CRB 

2 1

A, 5A, 0



30

MESSAGES AND 
OBJECTS

•Use UDP 

•Prohibited: 

•TCP (or any other reliable 
communication protocol) 

•Any other IPC

Technicalities

•For simplicity sake: 

•Both keys and values are short ASCII strings 

•At most 10 chars each

2 1
UDP



30

MESSAGES AND 
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•Use UDP 

•Prohibited: 

•TCP (or any other reliable 
communication protocol) 

•Any other IPC

Technicalities

Key, Value
•For simplicity sake: 

•Both keys and values are short ASCII strings 

•At most 10 chars each

2 1
UDP
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TESTING AND GRADING

Technicalities

The results of all the 
GET operations
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TESTING AND GRADING

Technicalities

For each line in input file: 
1. execute request 
2. write to output file

INPUT

INPUT + OUTPUT

The results of all the 
GET operations
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consistency

• Java template

• Compilation

• Testing


1.Correctness

2.Performance
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3.Goals 

4.Technicalities 
 

5.One last look at causal 
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• Compilation

• Testing


1.Correctness
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NOT COVERED SEE PROJECT DOCUMENTATION



• Given two operations, op1 and op2 

• op1 → op2 (causally precedes) 
if any of the following three cases applies: 

(a) FIFO: A process invokes op1 and then 
invokes op2 

(b) Local: A process invokes the PUT 
operation op1 and another process invokes 
the GET operation op2, where op2 observes 
the written value of op1 

(c) Transitivity: There exists an intermediate 
operation op′ such that op1 → op′ and  
op′ → op2.

33

Causal consistency — one last look

p1 put(A,0) put(B,1)

op1 op2

p1 put(A,0)
op1

p2 get(A,0)

op2

p1 put(A,0)
op1

p2 get(B,1)

op2

put(B,1)

op’
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Causal consistency — one last look

p1

p2

p3

put(A,0) put(A,1)

get(A,1) put(B,2)

get(B,2) get(A,0)

Does it respect causality?
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Causal consistency — one last look

p1

p2

p3

put(A,0) put(A,1)

get(A,1) put(B,2)

get(B,2) get(A,0)

Does it respect causality?

NO: 

It s
ho

uld
 re

tu
rn

 (A
,1)

Ye
sYe

s



1.Bitcoin — not needed for exam 

•Nakamoto, Satoshi (24 May 2009).  
"Bitcoin: A Peer-to-Peer Electronic Cash System”. 
https://bitcoin.org/bitcoin.pdf  
(canonical Bitcoin) 

Causal Broadcast 
2.Social networking (= bonus project) 

•CS-451 Bonus Project (2015). 
“A Storage System for Social Networks”. 
https://github.com/LPD-EPFL/da15-s4 

•Ahamad, M., Neiger, G., Burns, J. E., Kohli, P., & Hutto, 
P. W. (1995). Causal memory: definitions, 
implementation, and programming. (§5). Distributed 
Computing, 9(1).

Further reading
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https://bitcoin.org/bitcoin.pdf
https://github.com/LPD-EPFL/da15-s4

