
Applications for Broadcast
[Reliable, Uniform, Causal, and Total-Order]

Adi Seredinschi
Distributed Programming Laboratory

1

MIDTERM

23/11/2015

Lectures  
— including this one
Exercises 
— class (+ optional book)

3

Question:
What do Distributed Systems
have in common with Onions?

3

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

3

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

3

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast

3

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast
Application

3

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast
Application

User

3

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast
Application

User

3

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Focus of today

Broadcast 
(we will investigate different properties..)

1.CAMIPRO-Bitcoin
•The canonical Bitcoin design

•Uses gossip (best-effort broadcast)

•Relies heavily on crypto — no time to cover that

•We will not discuss the canonical design

• Instead, we will design our own version of Bitcoin

•Optimized for CAMIPRO

Let’s design some applications

4

¢

Broadcast 
(we will investigate different properties..)

1.CAMIPRO-Bitcoin
•The canonical Bitcoin design

•Uses gossip (best-effort broadcast)

•Relies heavily on crypto — no time to cover that

•We will not discuss the canonical design

• Instead, we will design our own version of Bitcoin

•Optimized for CAMIPRO

Let’s design some applications

4

¢

[BONUS PROJECT]
Causal Broadcast
1.S4: Storage for Social Networks

• A simplified version of Twitter

5

¢

CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF

2.Make banks obsolete

Conceptual goals:

6

CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF

2.Make banks obsolete

Conceptual goals:

6

CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF

2.Make banks obsolete

Conceptual goals: IN	PRACTICE

6

¢
¢ ¢

¢
¢ ¢

vs.

• Ledger

Main concepts

Replicated

7

¢
¢ ¢

¢
¢ ¢

• Ledger

Main concepts

Replicated

• Node

7

¢

¢
¢ ¢

¢
¢ ¢

• Ledger

Main concepts

Replicated

• Node

??

7

¢

¢
¢ ¢

¢
¢ ¢

• Ledger

Main concepts

Replicated

• Transaction

• Node

“Alice gives some money to Bob”

??

7

¢

¢
¢ ¢

¢
¢ ¢

• Ledger

Main concepts

Replicated

• Transaction

• Node

Let’s see how they all fit together..

“Alice gives some money to Bob”

??

7

¢

¢
¢ ¢

¢
¢ ¢

High-level interactions

8

High-level interactions

8

High-level interactions

8

High-level interactions

Recognise any abstractions?
8

High-level interactions

BROADCAST

What kind of broadcast?

9

High-level interactions

BROADCAST

What kind of broadcast?

9

PROPERTIES
(guarantees)

PERFORMANCE

of a cube

10

PROPERTIES

Analogy 
(not formal)

of a cube

of broadcast

Reliability
Uniformity Causality Ordering

10

PROPERTIES

Do we need 
Reliability?

• Consider the following:
• User A starts
• Use best-effort broadcast

• Validity + !Duplication + !Creation
• “the burden of reliability is on the sender”
• Lacks Agreement ⇒ Nodes diverge

TX1

11

TX1TX1
PROPERTIES

Do we need 
Reliability?

• Consider the following:
• User A starts
• Use best-effort broadcast

• Validity + !Duplication + !Creation
• “the burden of reliability is on the sender”
• Lacks Agreement ⇒ Nodes diverge

TX1

What if the sender crashes?
11

TX1

?

??
?

TX1
PROPERTIES

Do we need 
Uniformity?

• Consider the following:
• User A starts
• Use regular reliable broadcast

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes

• Is it OK to deliver and crash?

TX1

12

TX1

TX1

PROPERTIES

Do we need 
Uniformity?

• Consider the following:
• User A starts
• Use regular reliable broadcast

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes

• Is it OK to deliver and crash?

TX1

“Uniformity is important if  
nodes interact with the external world”

12

TX1

TX1

PROPERTIES

Do we need 
Uniformity?

• Consider the following:
• User A starts
• Use regular reliable broadcast

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes

• Is it OK to deliver and crash?

TX1

“Uniformity is important if  
nodes interact with the external world”

12

TX1

TX1

What if User B observes
TX1 before the nodes

crash?

PROPERTIES

• Consider the following:
• User A starts and
• Use uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes

• All nodes deliver both TX, but the order may differ

TX1

13

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX1 TX2

TX1 TX2
TX1TX2

Do we need
Causality? 

(partial ordering)

PROPERTIES

What if depends on  
money from ?

• Consider the following:
• User A starts and
• Use uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes

• All nodes deliver both TX, but the order may differ

TX1

13

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX1 TX2

TX1 TX2
TX1TX2

TX2
TX1

Do we need
Causality? 

(partial ordering)

PROPERTIES

• Consider the following:
• User A starts
• User B starts
• Use causal-order uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs

• All nodes deliver both TX, but the order may differ

Do we need
(Total) Ordering?

TX1

14

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX2 TX1

TX2 TX1
TX1TX2

No dependency
among these two

PROPERTIES

What if and
 are not commutative?

• Consider the following:
• User A starts
• User B starts
• Use causal-order uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs

• All nodes deliver both TX, but the order may differ

Do we need
(Total) Ordering?

TX1

14

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX2 TX1

TX2 TX1
TX1TX2

TX1

No dependency
among these two

PROPERTIES

TX2

Commutativity
counter-example

100.-
CHF

150.-
CHF

TX1:
+50.- CHF

TX2:
+10%

165.-
CHF

100.-
CHF

110.-
CHF

TX1:
+50.- CHF

TX2:
+10%

160.-
CHF

15

Commutativity
counter-example

100.-
CHF

150.-
CHF

TX1:
+50.- CHF

TX2:
+10%

165.-
CHF

Deposit Interest

100.-
CHF

110.-
CHF

TX1:
+50.- CHF

TX2:
+10%

160.-
CHF

Initial 
sum

15

Commutativity
counter-example

100.-
CHF

150.-
CHF

TX1:
+50.- CHF

TX2:
+10%

165.-
CHF

Deposit Interest

100.-
CHF

110.-
CHF

TX1:
+50.- CHF

TX2:
+10%

160.-
CHF

Initial 
sum

State 
diverged

15

• Reliability
• Sender crashes
• Agreement

• Uniformity
• Again, crashes
• Interaction with outside world

• Causality
• Partial order
• Dependencies among TXs

• Total order
• Commutativity

16

PROPERTIES

• Reliability
• Sender crashes
• Agreement

• Uniformity
• Again, crashes
• Interaction with outside world

• Causality
• Partial order
• Dependencies among TXs

• Total order
• Commutativity

Contrast:
• Canonical Bitcoin requires 

best-effort broadcast

• Allows temp. inconsistencies

• Makes up with crypto

16

PROPERTIES

• Reliability
• Sender crashes
• Agreement

• Uniformity
• Again, crashes
• Interaction with outside world

• Causality
• Partial order
• Dependencies among TXs

• Total order
• Commutativity

Contrast:
• Canonical Bitcoin requires 

best-effort broadcast

• Allows temp. inconsistencies

• Makes up with crypto

16

PROPERTIES

All properties are desirable

Goals:
1.Replace traditional CAMIPRO

2.Make banks obsolete

17

PERFORMANCE

AN INFORMAL COMPARISON… ¢

Goals:
1.Replace traditional CAMIPRO

2.Make banks obsolete

17

PERFORMANCE

CANONICAL	
BITCOIN

CAMIPRO	
BITCOIN

• Best-effort broadcast

• Optimized for Internet (WAN)

• TX~10 minutes

AN INFORMAL COMPARISON…

• Bitcoin-Broadcast

• Optimized for small network (EPFL

LAN)

• TX~1second (back of the envelope)

• Acceptable latency & throughput

¢

How useful would that be?

(in the lunch queue)

Specification

Module:

Name: CAMIPRO-Bitcoin, instance cbit

Properties:

• RB1, RB2, RB3, RB4

• Causal Order (CO)

• Total order (TO)

Specification

What’s left 
????

¢

Events:

Request: 〈cbit, Start | TX〉: 
 Attempts to commit TX

Indication: 〈cbit, Status | TX, s〉:  
 Indicates the status s∈{“Abort”,“Commit”} of TX

Module:

Name: CAMIPRO-Bitcoin, instance cbit

Properties:

• RB1, RB2, RB3, RB4

• Causal Order (CO)

• Total order (TO)

Specification

18

¢

CAMIPRO-Bitcoin

User

Request Indication

S4:  
(Student’s) Simple Storage

Service

Overview:

1.Setup & System model

2.Operations

3.Goals

4.Technicalities

5.One last look at causal consistency

Causally-consistent storage for social networks

S4:  
(Student’s) Simple Storage

Service

Overview:

1.Setup & System model

2.Operations

3.Goals

4.Technicalities

5.One last look at causal consistency

Causally-consistent storage for social networks

[BONUS PROJECT]

Setup:

•Users 
 
 

•Storage replicas 
(Nodes) 
 
 

•Objects: stored on replicas

S4 — System model

20

0
2

1 n…

U1
…..

key, value

A, 0

B, 1

C, 9
MSGx, hello

tweetY, BYE

U2 U?

S4 — Operations

21

1 2

PUT 
tweet-U1, messageX

⊥

GET 
tweet-U1 messageX

PUT GET

BROADCAST

U1 U2

Goals:

1.Reliability

•Three replicas

•Communicate through  
message-passing

2.Consistency

•We want to use it in the Internet (WAN)
• (Unlike CAMIPRO-Bitcoin, which was optimized for the EPFL network)
• Can’t afford total-order, too expensive!

•Causal consistency

S4 — Goals

22

0

2

1CAUSAL
BROADCAST

Technicalities

23

Nodes:
• Each node is a Linux process
• Contains:

• A storage engine
• A causal-broadcast

implementation (crb)

0
A, 0

B, 1….

St
or

ag
e

en
gi

ne

GET 
A

PUT 
A, 0

CRB:
Request: 〈CRB, BROADCAST | {A, 0}〉
Indication:〈CRB, DELIVER | P, {A, 0}〉

Technicalities

23

Node 0: Address+Port

Node 1: Address+Port

Node 2: Address+Port

input file
ID∈{0,1,2}

Nodes:
• Each node is a Linux process
• Contains:

• A storage engine
• A causal-broadcast

implementation (crb)

0
A, 0

B, 1….

St
or

ag
e

en
gi

ne

GET 
A

PUT 
A, 0

CRB:
Request: 〈CRB, BROADCAST | {A, 0}〉
Indication:〈CRB, DELIVER | P, {A, 0}〉

s4 addr-0 port-0 addr-1 port-1 addr-2 port-2 n f

We start a process by calling:

To start all nodes, 
we execute the commands:

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 1 1.input
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 2 2.input

Technicalities

24

To start all nodes, 
we execute the commands:

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 1 1.input
s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 2 2.input

Technicalities

24

input files

Technicalities

25

0

INPUT FILES,  
OUTPUT FILES AND
SIGNALS

Technicalities

25

0

INPUT FILES,  
OUTPUT FILES AND
SIGNALS

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input

Waiting for  
signal

Start

Technicalities

25

0

INPUT FILES,  
OUTPUT FILES AND
SIGNALS

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input

For each line in input file:
1. execute request
2. write to output file

Waiting for  
signal

INT 
received

Start

Technicalities

25

0

INPUT FILES,  
OUTPUT FILES AND
SIGNALS

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input

For each line in input file:
1. execute request
2. write to output file

Waiting for  
signal

INT 
received

STOP 
received

Waiting for  
signal

Start

Technicalities

25

0

INPUT FILES,  
OUTPUT FILES AND
SIGNALS

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input

For each line in input file:
1. execute request
2. write to output file

Waiting for  
signal

INT 
received

STOP 
received

CONT 
received

Waiting for  
signal

Start

Technicalities

25

0

INPUT FILES,  
OUTPUT FILES AND
SIGNALS

s4 127.0.0.1 8900 127.0.0.1 8901 127.0.0.1 8902 0 0.input

For each line in input file:
1. execute request
2. write to output file

Waiting for  
signal

INT 
received

STOP 
received

KILL 
received

CONT 
received

Waiting for  
signal

Start Stop

Technicalities

26

OPERATIONS — GET

•Translates to a local read
operation

•Directly from the Storage engine

•Write the read value in the
output file

•No need to contact the other
nodes

0

A, 0

B, 1….

St
or

ag
e

en
gi

ne

GET 
A A, 0

read(A) returns

27

OPERATIONS — PUT

PUT 
A, 0

•Translates to a causal-order
(crb) broadcast request

•Use the algorithm from the
class

•No need to write anything (⊥) 
in the output file

〈CRB, BROADCAST | {A, 0}〉

0

2 1

Technicalities

27

OPERATIONS — PUT

PUT 
A, 0

•Translates to a causal-order
(crb) broadcast request

•Use the algorithm from the
class

•No need to write anything (⊥) 
in the output file

〈CRB, BROADCAST | {A, 0}〉

0

2 1

〈CRB, DELIVER | P, {A, 0}〉

What happens when a node delivers a message?

Technicalities

28

OPERATIONS

•Triggers an update in the
storage engine

0

2 1

〈CRB, DELIVER | P, {A, 0}〉

Technicalities

〈CRB, DELIVER | P, {A, 0}〉

A, 0

B, 1….

write(A,0)

28

OPERATIONS

•Triggers an update in the
storage engine

0

2 1

〈CRB, DELIVER | P, {A, 0}〉

Technicalities

〈CRB, DELIVER | P, {A, 0}〉

A, 0

B, 1….

write(A,0)

Now let’s put all the pieces together…

29

OVERVIEW OF A NODE

0

Technicalities

A, 0

B, 1….

St
or

ag
e

en
gi

ne
GET 

A
PUT 
A, 5

CRB

2 1

29

OVERVIEW OF A NODE

0

Technicalities

A, 0

B, 1….

St
or

ag
e

en
gi

ne
GET 

A

read(A)

A, 0

returns

PUT 
A, 5

CRB

2 1

29

OVERVIEW OF A NODE

0

Technicalities

〈CRB, DELIVER | P, {A, 5}〉

write(A,5)

A, 0

B, 1….

St
or

ag
e

en
gi

ne
GET 

A

read(A)

A, 0

returns

PUT 
A, 5

〈CRB, BROADCAST | {A, 5}〉CRB

2 1

29

OVERVIEW OF A NODE

0

Technicalities

〈CRB, DELIVER | P, {A, 5}〉

write(A,5)

B, 1….

St
or

ag
e

en
gi

ne
GET 

A

read(A)

A, 0

returns

PUT 
A, 5

〈CRB, BROADCAST | {A, 5}〉CRB

2 1

A, 5A, 0

30

MESSAGES AND
OBJECTS

•Use UDP

•Prohibited:

•TCP (or any other reliable
communication protocol)

•Any other IPC

Technicalities

•For simplicity sake:

•Both keys and values are short ASCII strings

•At most 10 chars each

2 1
UDP

30

MESSAGES AND
OBJECTS

•Use UDP

•Prohibited:

•TCP (or any other reliable
communication protocol)

•Any other IPC

Technicalities

Key, Value
•For simplicity sake:

•Both keys and values are short ASCII strings

•At most 10 chars each

2 1
UDP

31

TESTING AND GRADING

Technicalities

The results of all the
GET operations

31

TESTING AND GRADING

Technicalities

For each line in input file:
1. execute request
2. write to output file

INPUT

INPUT + OUTPUT

The results of all the
GET operations

S4

Overview:

1.Setup & System model

2.Operations

3.Goals

4.Technicalities 
 

5.One last look at causal
consistency

• Java template

• Compilation

• Testing

1.Correctness

2.Performance

S4

Overview:

1.Setup & System model

2.Operations

3.Goals

4.Technicalities 
 

5.One last look at causal
consistency

• Java template

• Compilation

• Testing

1.Correctness

2.Performance

NOT COVERED SEE PROJECT DOCUMENTATION

• Given two operations, op1 and op2

• op1 → op2 (causally precedes) 
if any of the following three cases applies:

(a) FIFO: A process invokes op1 and then
invokes op2

(b) Local: A process invokes the PUT
operation op1 and another process invokes
the GET operation op2, where op2 observes
the written value of op1

(c) Transitivity: There exists an intermediate
operation op′ such that op1 → op′ and  
op′ → op2.

33

Causal consistency — one last look

p1 put(A,0) put(B,1)

op1 op2

p1 put(A,0)
op1

p2 get(A,0)

op2

p1 put(A,0)
op1

p2 get(B,1)

op2

put(B,1)

op’

34

Causal consistency — one last look

p1

p2

p3

put(A,0) put(A,1)

get(A,1) put(B,2)

get(B,2) get(A,0)

Does it respect causality?

34

Causal consistency — one last look

p1

p2

p3

put(A,0) put(A,1)

get(A,1) put(B,2)

get(B,2) get(A,0)

Does it respect causality?

NO:

It s
ho

uld
 re

tu
rn

 (A
,1)

Ye
sYe

s

1.Bitcoin — not needed for exam

•Nakamoto, Satoshi (24 May 2009).  
"Bitcoin: A Peer-to-Peer Electronic Cash System”.
https://bitcoin.org/bitcoin.pdf  
(canonical Bitcoin)

Causal Broadcast
2.Social networking (= bonus project)

•CS-451 Bonus Project (2015). 
“A Storage System for Social Networks”. 
https://github.com/LPD-EPFL/da15-s4

•Ahamad, M., Neiger, G., Burns, J. E., Kohli, P., & Hutto,
P. W. (1995). Causal memory: definitions,
implementation, and programming. (§5). Distributed
Computing, 9(1).

Further reading

35

https://bitcoin.org/bitcoin.pdf
https://github.com/LPD-EPFL/da15-s4

