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What do Distributed Systems 
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2. Abstraction 
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Focus of today



Broadcast 
(we will investigate different properties..) 

CAMIPRO-Bitcoin 

•The canonical Bitcoin design


•Uses gossip (best-effort broadcast)


•Relies heavily on crypto — no time to cover that


•We will not discuss the canonical design 

• Instead, we will design our own version of Bitcoin 

•Optimized for CAMIPRO

Let’s design a simple application
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CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF


2.Make banks obsolete

Conceptual goals:
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CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF


2.Make banks obsolete

Conceptual goals: IN PRACTICE
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• Ledger

Main concepts

Replicated

• Transaction

• Node

Let’s see how they all fit together..
“Alice gives some money to Bob”

??
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High-level interactions

Recognise any abstractions?
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PROPERTIES 
(guarantees)

PERFORMANCE



of a cube
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Analogy 
(not formal)

of a cube

of broadcast

Reliability
Uniformity Causality Ordering
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Do we need 
Reliability?

• Consider the following: 
• User A starts 
• Use best-effort broadcast 

• Validity + !Duplication + !Creation 
• “the burden of reliability is on the sender” 
• Lacks Agreement ⇒ Nodes diverge

TX1
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• Validity + !Duplication + !Creation 
• “the burden of reliability is on the sender” 
• Lacks Agreement ⇒ Nodes diverge

TX1

What if the sender crashes?
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Do we need 
Uniformity?

• Consider the following: 
• User A starts 
• Use regular reliable broadcast 

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes 

• Is it OK to deliver and crash?
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Do we need 
Uniformity?

• Consider the following: 
• User A starts 
• Use regular reliable broadcast 

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes 

• Is it OK to deliver and crash?

TX1

“Uniformity is important if  
nodes interact with the external world”
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TX1

TX1

What if User B observes 
TX1 before the nodes 

crash?
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• Consider the following: 
• User A starts         and  
• Use uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes  

• All nodes deliver both TX, but the order may differ

TX1
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What if         depends on  
money from        ?

• Consider the following: 
• User A starts         and  
• Use uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes  

• All nodes deliver both TX, but the order may differ

TX1
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• Consider the following: 
• User A starts 
• User B starts  
• Use causal-order uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs 

• All nodes deliver both TX, but the order may differ

Do we need 
(Total) Ordering?

TX1
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What if        and 
      are not commutative?

• Consider the following: 
• User A starts 
• User B starts  
• Use causal-order uniform reliable broadcast 

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs 

• All nodes deliver both TX, but the order may differ

Do we need 
(Total) Ordering?

TX1
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TX2 TX1
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TX1

No dependency 
among these two

PROPERTIES
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Commutativity  
counter-example
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• Reliability 
• Sender crashes 
• Agreement 

• Uniformity 
• Again, crashes 
• Interaction with outside world 

• Causality 
• Partial order 
• Dependencies among TXs 

• Total order 
• Commutativity
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PERFORMANCE

CANONICAL 
BITCOIN

CAMIPRO 
BITCOIN

• Best-effort broadcast

• Optimized for Internet (WAN)

• TX~10 minutes

AN INFORMAL COMPARISON…

• CAMIPRO-Bitcoin-Broadcast

• Optimized for small network (EPFL 

LAN)

• TX~1second (back of the envelope)

• Acceptable latency & throughput
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How useful would that be?

(in the lunch queue)



Specification
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Module: 

Name: CAMIPRO-Bitcoin-Broadcast, instance cbit


Properties: 

• URB1, URB2, URB3, URB4 

• Causal Order (CO)  

• Total order (TO)

Specification

17

What’s left 
????
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Events: 

Request: 〈cbit, Start | TX〉: 
  Attempts to commit TX 

Indication: 〈cbit, Status | TX, s〉:  
  Indicates the status s∈{“Abort”,“Commit”} of TX
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CAMIPRO-Bitcoin

Request Indication

CAMIPRO-Bitcoin-Broadcast



• Given two operations, op1 and op2 

• op1 → op2 (causally precedes) 
if any of the following three cases applies: 

(a) FIFO: A process invokes op1 and then 
invokes op2 

(b) Local: A process invokes the PUT 
operation op1 and another process invokes 
the GET operation op2, where op2 observes 
the written value of op1 

(c) Transitivity: There exists an intermediate 
operation op′ such that op1 → op′ and  
op′ → op2.
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Causal consistency — one last look

p1 put(A,0) put(B,1)

op1 op2

p1 put(A,0)
op1

p2 get(A,0)

op2

p1 put(A,0)
op1

p2 get(B,1)

op2

put(B,1)

op’
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Causal consistency — one last look

p1

p2

p3

put(A,0) put(A,1)

get(A,1) put(B,2)

get(B,2) get(A,0)

Does it respect causality?
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