
Application for Broadcast
[Reliable, Uniform, Causal, and Total-Order]

Adi Seredinschi
Distributed Programming Laboratory

1

2

Question:
What do Distributed Systems
have in common with Onions?

2

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

2

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

2

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast

2

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast
Application

2

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast
Application

User

2

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Network

Point-to-Point
Links

Broadcast
Application

User

2

Question:
What do Distributed Systems
have in common with Onions?

Answer:
1. Layering
2. Abstraction
3. They make you cry

Focus of today

Broadcast 
(we will investigate different properties..) 

CAMIPRO-Bitcoin

•The canonical Bitcoin design

•Uses gossip (best-effort broadcast)

•Relies heavily on crypto — no time to cover that

•We will not discuss the canonical design

• Instead, we will design our own version of Bitcoin

•Optimized for CAMIPRO

Let’s design a simple application

3

¢

4

¢

CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF

2.Make banks obsolete

Conceptual goals:

5

CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF

2.Make banks obsolete

Conceptual goals:

5

CAMIPRO-Bitcoin

1.Replace traditional CAMIPRO

• Based on CHF

2.Make banks obsolete

Conceptual goals: IN PRACTICE

5

¢
¢ ¢

¢
¢ ¢

vs.

• Ledger

Main concepts

Replicated

6

¢
¢ ¢

¢
¢ ¢

• Ledger

Main concepts

Replicated

• Node

6

¢

¢
¢ ¢

¢
¢ ¢

• Ledger

Main concepts

Replicated

• Node

6

¢

¢
¢ ¢

¢
¢ ¢

IRRELEVANT

• Ledger

Main concepts

Replicated

• Node

??

6

¢

¢
¢ ¢

¢
¢ ¢

IRRELEVANT

• Ledger

Main concepts

Replicated

• Transaction

• Node

“Alice gives some money to Bob”

??

6

¢

¢
¢ ¢

¢
¢ ¢

IRRELEVANT

• Ledger

Main concepts

Replicated

• Transaction

• Node

Let’s see how they all fit together..
“Alice gives some money to Bob”

??

6

¢

¢
¢ ¢

¢
¢ ¢

IRRELEVANT

High-level interactions

7

High-level interactions

7

High-level interactions

7

High-level interactions

Recognise any abstractions?
7

High-level interactions

BROADCAST

What kind of broadcast?

8

High-level interactions

BROADCAST

What kind of broadcast?

8

PROPERTIES
(guarantees)

PERFORMANCE

of a cube

9

PROPERTIES

Analogy 
(not formal)

of a cube

of broadcast

Reliability
Uniformity Causality Ordering

9

PROPERTIES

Do we need 
Reliability?

• Consider the following:
• User A starts
• Use best-effort broadcast

• Validity + !Duplication + !Creation
• “the burden of reliability is on the sender”
• Lacks Agreement ⇒ Nodes diverge

TX1

10

TX1TX1
PROPERTIES

Do we need 
Reliability?

• Consider the following:
• User A starts
• Use best-effort broadcast

• Validity + !Duplication + !Creation
• “the burden of reliability is on the sender”
• Lacks Agreement ⇒ Nodes diverge

TX1

What if the sender crashes?
10

TX1

?

??
?

TX1
PROPERTIES

Do we need 
Uniformity?

• Consider the following:
• User A starts
• Use regular reliable broadcast

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes

• Is it OK to deliver and crash?

TX1

11

TX1

TX1

PROPERTIES

Do we need 
Uniformity?

• Consider the following:
• User A starts
• Use regular reliable broadcast

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes

• Is it OK to deliver and crash?

TX1

“Uniformity is important if  
nodes interact with the external world”

11

TX1

TX1

PROPERTIES

Do we need 
Uniformity?

• Consider the following:
• User A starts
• Use regular reliable broadcast

• Validity + !Duplication + !Creation  
+ Agreement for correct nodes

• Is it OK to deliver and crash?

TX1

“Uniformity is important if  
nodes interact with the external world”

11

TX1

TX1

What if User B observes
TX1 before the nodes

crash?

PROPERTIES

• Consider the following:
• User A starts and
• Use uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes

• All nodes deliver both TX, but the order may differ

TX1

12

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX1 TX2

TX1 TX2
TX1TX2

Do we need
Causality? 

(partial ordering)

PROPERTIES

What if depends on  
money from ?

• Consider the following:
• User A starts and
• Use uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement 
⇒ Applies to all nodes

• All nodes deliver both TX, but the order may differ

TX1

12

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX1 TX2

TX1 TX2
TX1TX2

TX2
TX1

Do we need
Causality? 

(partial ordering)

PROPERTIES

• Consider the following:
• User A starts
• User B starts
• Use causal-order uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs

• All nodes deliver both TX, but the order may differ

Do we need
(Total) Ordering?

TX1

13

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX2 TX1

TX2 TX1
TX1TX2

No dependency
among these two

PROPERTIES

What if and
 are not commutative?

• Consider the following:
• User A starts
• User B starts
• Use causal-order uniform reliable broadcast

• Validity + !Duplication + !Creation + Uniform Agreement + Causality 
⇒ Respect causal dependencies among TXs

• All nodes deliver both TX, but the order may differ

Do we need
(Total) Ordering?

TX1

13

TX1

TX2

TX2 TX1 TX2

TX1 TX2
TX2 TX1

TX2 TX1
TX1TX2

TX1

No dependency
among these two

PROPERTIES

TX2

Commutativity
counter-example

100.-
CHF

150.-
CHF

TX1:
+50.- CHF

TX2:
+10%

165.-
CHF

100.-
CHF

110.-
CHF

TX1:
+50.- CHF

TX2:
+10%

160.-
CHF

14

Commutativity
counter-example

100.-
CHF

150.-
CHF

TX1:
+50.- CHF

TX2:
+10%

165.-
CHF

Deposit Interest

100.-
CHF

110.-
CHF

TX1:
+50.- CHF

TX2:
+10%

160.-
CHF

Initial 
sum

14

Commutativity
counter-example

100.-
CHF

150.-
CHF

TX1:
+50.- CHF

TX2:
+10%

165.-
CHF

Deposit Interest

100.-
CHF

110.-
CHF

TX1:
+50.- CHF

TX2:
+10%

160.-
CHF

Initial 
sum

State 
diverged

14

• Reliability
• Sender crashes
• Agreement

• Uniformity
• Again, crashes
• Interaction with outside world

• Causality
• Partial order
• Dependencies among TXs

• Total order
• Commutativity

15

PROPERTIES

• Reliability
• Sender crashes
• Agreement

• Uniformity
• Again, crashes
• Interaction with outside world

• Causality
• Partial order
• Dependencies among TXs

• Total order
• Commutativity

Contrast:
• Canonical Bitcoin requires 

best-effort broadcast

• Allows temp. inconsistencies

• Makes up with crypto

15

PROPERTIES

• Reliability
• Sender crashes
• Agreement

• Uniformity
• Again, crashes
• Interaction with outside world

• Causality
• Partial order
• Dependencies among TXs

• Total order
• Commutativity

Contrast:
• Canonical Bitcoin requires 

best-effort broadcast

• Allows temp. inconsistencies

• Makes up with crypto

15

PROPERTIES

All properties are desirable

Goals:
1.Replace traditional CAMIPRO

2.Make banks obsolete

16

PERFORMANCE

AN INFORMAL COMPARISON… ¢

Goals:
1.Replace traditional CAMIPRO

2.Make banks obsolete

16

PERFORMANCE

CANONICAL
BITCOIN

• Best-effort broadcast

• Optimized for Internet (WAN)

• TX~10 minutes

AN INFORMAL COMPARISON… ¢

How useful would that be?

(in the lunch queue)

Goals:
1.Replace traditional CAMIPRO

2.Make banks obsolete

16

PERFORMANCE

CANONICAL
BITCOIN

CAMIPRO
BITCOIN

• Best-effort broadcast

• Optimized for Internet (WAN)

• TX~10 minutes

AN INFORMAL COMPARISON…

• CAMIPRO-Bitcoin-Broadcast

• Optimized for small network (EPFL

LAN)

• TX~1second (back of the envelope)

• Acceptable latency & throughput

¢

How useful would that be?

(in the lunch queue)

Specification

17

Module:

Name: CAMIPRO-Bitcoin-Broadcast, instance cbit

Properties:

• URB1, URB2, URB3, URB4

• Causal Order (CO)

• Total order (TO)

Specification

17

What’s left 
????

¢

Events:

Request: 〈cbit, Start | TX〉: 
 Attempts to commit TX

Indication: 〈cbit, Status | TX, s〉:  
 Indicates the status s∈{“Abort”,“Commit”} of TX

Module:

Name: CAMIPRO-Bitcoin-Broadcast, instance cbit

Properties:

• URB1, URB2, URB3, URB4

• Causal Order (CO)

• Total order (TO)

Specification

17

¢

Events:

Request: 〈cbit, Start | TX〉: 
 Attempts to commit TX

Indication: 〈cbit, Status | TX, s〉:  
 Indicates the status s∈{“Abort”,“Commit”} of TX

Module:

Name: CAMIPRO-Bitcoin-Broadcast, instance cbit

Properties:

• URB1, URB2, URB3, URB4

• Causal Order (CO)

• Total order (TO)

Specification

17

¢

CAMIPRO-Bitcoin

Request Indication

CAMIPRO-Bitcoin-Broadcast

• Given two operations, op1 and op2

• op1 → op2 (causally precedes) 
if any of the following three cases applies:

(a) FIFO: A process invokes op1 and then
invokes op2

(b) Local: A process invokes the PUT
operation op1 and another process invokes
the GET operation op2, where op2 observes
the written value of op1

(c) Transitivity: There exists an intermediate
operation op′ such that op1 → op′ and  
op′ → op2.

18

Causal consistency — one last look

p1 put(A,0) put(B,1)

op1 op2

p1 put(A,0)
op1

p2 get(A,0)

op2

p1 put(A,0)
op1

p2 get(B,1)

op2

put(B,1)

op’

19

Causal consistency — one last look

p1

p2

p3

put(A,0) put(A,1)

get(A,1) put(B,2)

get(B,2) get(A,0)

Does it respect causality?

19

Causal consistency — one last look

p1

p2

p3

put(A,0) put(A,1)

get(A,1) put(B,2)

get(B,2) get(A,0)

Does it respect causality?

NO:

It s
ho

uld
 re

tu
rn

 (A
,1)

Ye
sYe

s

