
1

Communication Channels
in Practice

24.10.2016

Distributed Algorithms

2

Processes communicate by message
passing through communication channels

Messages are uniquely identified and the
message identifier includes the sender’s
identifier

Processes/Channels

3

Fair-loss links

 FL1. Fair-loss:

 FL2. Finite duplication:

FL3. No creation:

4

Fair-loss links

 FL1. Fair-loss: If a message is sent
infinitely often by pi to pj , and neither pi or
pj crashes, then m is delivered infinitely
often by pj

 FL2. Finite duplication: If a message m is
sent a finite number of times by pi to pj, m
is delivered a finite number of times by pj

FL3. No creation: No message is delivered
unless it was sent

5

Stubborn links

 SL1. Stubborn delivery: if a process pi sends
a message m to a correct process pj, and pi
does not crash, then pj delivers m an infinite
number of times

SL2. No creation: No message is delivered
unless it was sent

6

Algorithm (sl)

Implements: StubbornLinks (sp2p).

Uses: FairLossLinks (flp2p).

upon event < sp2pSend, dest, m> do

 while (true) do

 trigger < flp2pSend, dest, m>;

upon event < flp2pDeliver, src, m> do

 trigger < sp2pDeliver, src, m>;

7

Reliable (Perfect) links

Properties

 PL1. Validity:

 PL2. No duplication: No message is
delivered (to a process) more than
once

 PL3. No creation: No message is
delivered unless it was sent

8

Reliable (Perfect) links

Properties

 PL1. Validity: If pi and pj are correct,
then every message sent by pi to pj
is eventually delivered by pj

 PL2. No duplication: No message is
delivered (to a process) more than
once

 PL3. No creation: No message is
delivered unless it was sent

9

Algorithm (pl)

Implements: PerfectLinks (pp2p).

Uses: StubbornLinks (sp2p).

upon event < Init> do delivered := ;

upon event < pp2pSend, dest, m> do

trigger < sp2pSend, dest, m>;

upon event < sp2pDeliver, src, m> do

 if m  delivered then

 trigger < pp2pDeliver, src, m>;

 add m to delivered;

10

Reliable links

 We shall assume reliable links (also
called perfect) throughout this course
(unless specified otherwise)

 Roughly speaking, reliable links ensure
that messages exchanged between
correct processes are not lost

11

Reliable FIFO links

 Ensures properties PL1 to PL3 of
perfect links

 FIFO. The messages are delivered in
the same order they were sent.

12

Algorithm (fl1)

 Implements: Reliable FIFO links (fp2p).

 Uses: Reliable links (pp2p).

 Relies on acknowledgements messages.

 Acknowledgements are control messages.

13

Algorithm (fl1)

 upon event <init> do

 nb_acks[*] := 0

 nb_sent[*] := 0

 upon event <fp2pSend, dest, m> do

 wait nb_acks[dest] = nb_sent[dest]

 nb_sent[dest] := nb_sent[dest]+1

 trigger <p2pSend, dest, m>

14

Algorithm (fl1)

 upon event <pp2pDeliver, src, m> do

 trigger <pp2pSend, src, ack>

 trigger <fp2pDeliver, src, m>

 upon event <pp2pDeliver, src, ack> do

 nb_ack[src] := nb_ack[src]+1

15

Algorithm (fl2)

 Implements: Reliable FIFO links (fp2p).

 Uses: Reliable links (pp2p).

 Relies on sequence numbers attached to each
message.

 upon event <init> do

 seq_nb[*] := 0

 next[*] := 0

16

Algorithm (fl2)

 upon event <fp2pSend, dest, m> do

 fifo_m := (seq_nb[dest], m)

 trigger <pp2pSend, dest, fifo_m)>

 seq_nb[dest] := seq_nb[dest]+1

 upon event <pp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 trigger <fp2pDeliver, src, m>

 next[src] := next[src]+1

17

(fl1) vs. (fl2)

 (fl1) uses 2 messages per applicative message.

 (fl1) artificially limits bandwidth if latency is high.

 (fl2) increases the size of messages.

 Sequence numbers in (fl2) have an unbounded
size.

18

Algorithm (fl3)

 Implements: Reliable FIFO links (fp2p).

 Uses: Reliable links (pp2p).

 Combines acknowledgements and sequence
numbers mechanisms.

 An acknowledgement is sent every ack_int
messages received.

 The sequence numbers are reset when they reach
ack_int x win_size.

 The sender has to block at the right moment.

19

Algorithm (fl3)

 upon event <init> do

 seq_nb[*] := 0

 next[*] := 0

 ack_nb[*] := 0

20

Algorithm (fl3)

 upon event <fp2pSend, dest, m> do

 wait ack_nb[dest] > seq_nb[dest] – win_size

 fifo_m := (seq_nb[dest], m)

 trigger <pp2pSend, dest, fifo_m>

 seq_nb[dest] := seq_nb[dest]+1

21

Algorithm (fl3)

 upon event <pp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 trigger <pp2pSend, src, ack>

 next[src] := next[src]+1

 trigger <fp2pDeliver, src, m>

 upon event <pp2pDeliver, src, ack> do

 ack_nb[src] := ack_nb[src]+1

22

Algorithm (fl4)

 upon event <init> do

 seq_nb[*] := 0

 next[*] := 0

 ack_nb[*] := 0

23

Algorithm (fl4)

 upon event <fp2pSend, dest, m> do

 wait ack_nb[dest] x ack_int >

seq_nb[dest] – win_size x ack_int

 fifo_m := (seq_nb[dest] mod (win_size x
ack_int), m)

 trigger <pp2pSend, dest, fifo_m>

 seq_nb[dest] := seq_nb[dest]+1

24

Algorithm (fl4)

 upon event <pp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 if (sn+1) mod ack_int = 0

 trigger <pp2pSend, src, ack>

 next[src] := (next[src]+1) mod (win_size x
ack_int)

 trigger <fp2pDeliver, src, m>

 upon event <pp2pDeliver, src, ack> do

 ack_nb[src] := ack_nb[src]+1

25

Fair-loss links

 FL1. Fair-loss: If a message is sent
infinitely often by pi to pj , and neither pi or
pj crashes, then m is delivered infinitely
often by pj

 FL2. Finite duplication: If a message m is
sent a finite number of times by pi to pj, m
is delivered a finite number of times by pj

FL3. No creation: No message is delivered
unless it was sent

26

Stoppable Stubborn links

 SL1. Stubborn delivery: if a process pi sends
a message m to a correct process pj, and pi
does not crash, then pj delivers m an infinite
number of times unless pi receives a stop
event for m

SL2. No creation: No message is delivered
unless it was sent

27

Algorithm (ssl)

Implements:

StoppableStubbornLinks (ssp2p).

Uses: FairLossLinks (flp2p).

upon event <init> do

 sending = 

28

Algorithm (ssl)

upon event < ssp2pSend, dest, m> do

add m to sending

while (m in sending) do

 trigger < flp2pSend, dest, m>;

upon event < flp2pDeliver, src, m> do

 trigger < ssp2pDeliver, src, m>;

29

Algorithm (ssl)

upon event < flp2pDeliver, src, m> do

 trigger < ssp2pDeliver, src, m>;

upon event <ssp2pStop, m>

remove m from sending

30

Perfect Stoppable Links

Properties

 PL1. Validity: If pi and pj are correct,
then every message sent by pi to pj
is eventually delivered by pj unless
pi receives a stop event for m

 PL2. No duplication: No message is
delivered (to a process) more than
once

 PL3. No creation: No message is
delivered unless it was sent

31

Algorithm (psl)

Implements: PerfectStoppableLinks (psp2p).

Uses: StubbornStoppableLinks (ssp2p).

upon event < Init> do delivered := ;

upon event < psp2pSend, dest, m> do

trigger < ssp2pSend, dest, m>;

upon event < ssp2pDeliver, src, m> do

 if m  delivered then

 trigger < psp2pDeliver, src, m>;

 add m to delivered;

32

Algorithm (psl)

upon event < psp2pStop, m> do

 trigger <ssp2pStop, m>

33

Algorithm (fl5)

 Implements: Reliable FIFO links (fp2p).

 Uses: Perfect Stoppable Links (psp2p).

 Relies on acknowledgements messages.

 Acknowledgements are control messages.

34

Algorithm (fl5)
 upon event <psp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 if (sn+1) mod ack_int = 0

 trigger <psp2pSend, src, ack>

 next[src] := (next[src]+1) mod (win_size x
ack_int)

 trigger <fp2pDeliver, src, m>

 upon event <psp2pDeliver, src, ack> do

 ack_nb[src] := ack_nb[src]+1

 trigger psp2pStop for all messages associated
with ack

35

Reliable Broadcast in
Practice

 What is the problem with (rb) on top of (beb) in
practice ?

– > scalability

36

Reliable Broadcast in
Practice

 What is the problem with (rb) on top of (beb) in
practice ?

– > scalability

 upon event <bebBroadcast, m> do

 forall pi in S do

• trigger <pp2pSend, pi, m>

37

Problem with rb/beb

 1 process does all the work !

 We need to parallelize

38

Algorithm (gossip)

 Implements: ReliableBroadcast (rb).

 Uses: Perfect Links (pp2p).

 Relies on spreading messages in a randomized way

 Every process forwards messages to random peers

 Probabilistic guarantees

–> liveness with probability 1

39

Algorithm (gossip)

 upon event <init> do

 delivered = 
 while (true)

• for each m in delivered do

– p = random process

– trigger <pp2pSend, p, m>

40

Algorithm (gossip)

 upon event <rbBroadcast, m>

 add m to delivered

 trigger <rbDeliver, self, m>

 upon event <pp2pDeliver, src, m> do

 if m  delivered then

• add m to delivered

• trigger <rbDeliver, src, m>

41

Gossip

Experiment

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

