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Processes communicate by message 
passing through communication channels 

Messages are uniquely identified and the 
message identifier includes the sender’s 
identifier

Processes/Channels
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Fair-loss links

 FL1. Fair-loss: 

 FL2. Finite duplication: 

FL3. No creation:
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Fair-loss links

 FL1. Fair-loss: If a message is sent 
infinitely often by pi to pj , and neither pi or 
pj crashes, then m is delivered infinitely 
often by pj

 FL2. Finite duplication: If a message m is 
sent a finite number of times by pi to pj, m 
is delivered a finite number of times by pj

FL3. No creation: No message is delivered 
unless it was sent
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Stubborn links

 SL1. Stubborn delivery:  if a process pi sends 
a message m to a correct process pj, and pi 
does not crash, then pj delivers m an infinite 
number of times 

SL2.   No creation: No message is delivered 
unless it was sent
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Algorithm (sl)

Implements:  StubbornLinks (sp2p).

Uses:  FairLossLinks (flp2p).

upon event < sp2pSend, dest, m> do 

 while (true) do 

  trigger < flp2pSend, dest, m>;

upon event < flp2pDeliver, src, m> do 

 trigger < sp2pDeliver, src, m>; 
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Reliable (Perfect) links

Properties

 PL1. Validity:

 PL2. No duplication: No message is 
delivered (to a process) more than 
once

 PL3. No creation: No message is 
delivered unless it was sent
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Reliable (Perfect) links

Properties

 PL1. Validity: If pi and pj are correct, 
then every message sent by pi to pj 
is eventually delivered by pj

 PL2. No duplication: No message is 
delivered (to a process) more than 
once

 PL3. No creation: No message is 
delivered unless it was sent
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Algorithm (pl)

Implements:  PerfectLinks (pp2p).

Uses:  StubbornLinks (sp2p).

upon event < Init> do delivered := ;

upon event < pp2pSend, dest, m> do 

trigger < sp2pSend, dest, m>; 

upon event < sp2pDeliver, src, m> do 

 if m  delivered then  

 trigger < pp2pDeliver, src, m>;

 add m to delivered;



10

Reliable links

 We shall assume reliable links (also 
called perfect) throughout this course 
(unless specified otherwise)

 Roughly speaking, reliable links ensure 
that messages exchanged between 
correct processes are not lost
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Reliable FIFO links

 Ensures properties PL1 to PL3 of 
perfect links

 FIFO. The messages are delivered in 
the same order they were sent.
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Algorithm (fl1)

 Implements: Reliable FIFO links (fp2p).

 Uses: Reliable links (pp2p).

 Relies on acknowledgements messages.

 Acknowledgements are control messages.
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Algorithm (fl1)

 upon event <init> do 

 nb_acks[*] := 0

 nb_sent[*] := 0

 upon event <fp2pSend, dest, m> do

 wait nb_acks[dest] = nb_sent[dest]

 nb_sent[dest] := nb_sent[dest]+1

 trigger <p2pSend, dest, m>



14

Algorithm (fl1)

 upon event <pp2pDeliver, src, m> do

 trigger <pp2pSend, src, ack>

 trigger <fp2pDeliver, src, m>

 upon event <pp2pDeliver, src, ack> do

 nb_ack[src] := nb_ack[src]+1
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Algorithm (fl2)

 Implements: Reliable FIFO links (fp2p).

 Uses: Reliable links (pp2p).

 Relies on sequence numbers attached to each 
message.

 upon event <init> do

 seq_nb[*] := 0

 next[*] := 0
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Algorithm (fl2)

 upon event <fp2pSend, dest, m> do

 fifo_m := ( seq_nb[dest], m )

 trigger <pp2pSend, dest, fifo_m)>

 seq_nb[dest] := seq_nb[dest]+1

 upon event <pp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 trigger <fp2pDeliver, src, m>

 next[src] := next[src]+1
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(fl1) vs. (fl2)

 (fl1) uses 2 messages per applicative message.

 (fl1) artificially limits bandwidth if latency is high.

 (fl2) increases the size of messages.

 Sequence numbers in (fl2) have an unbounded 
size.
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Algorithm (fl3)

 Implements: Reliable FIFO links (fp2p).

 Uses: Reliable links (pp2p).

 Combines acknowledgements and sequence 
numbers mechanisms.

 An acknowledgement is sent every ack_int 
messages received.

 The sequence numbers are reset when they reach 
ack_int x win_size.

 The sender has to block at the right moment.
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Algorithm (fl3)

 upon event <init> do

 seq_nb[*] := 0

 next[*] := 0

 ack_nb[*] := 0
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Algorithm (fl3)

 upon event <fp2pSend, dest, m> do

 wait ack_nb[dest] > seq_nb[dest] – win_size

 fifo_m := ( seq_nb[dest], m )

 trigger <pp2pSend, dest, fifo_m>

 seq_nb[dest] := seq_nb[dest]+1
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Algorithm (fl3)

 upon event <pp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 trigger <pp2pSend, src, ack>

 next[src] := next[src]+1

 trigger <fp2pDeliver, src, m>

 upon event <pp2pDeliver, src, ack> do

 ack_nb[src] := ack_nb[src]+1
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Algorithm (fl4)

 upon event <init> do

 seq_nb[*] := 0

 next[*] := 0

 ack_nb[*] := 0
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Algorithm (fl4)

 upon event <fp2pSend, dest, m> do

 wait ack_nb[dest] x ack_int > 

seq_nb[dest] – win_size x ack_int

 fifo_m := ( seq_nb[dest] mod (win_size x 
ack_int), m )

 trigger <pp2pSend, dest, fifo_m>

 seq_nb[dest] := seq_nb[dest]+1
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Algorithm (fl4)

 upon event <pp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 if (sn+1) mod ack_int = 0

 trigger <pp2pSend, src, ack>

 next[src] := (next[src]+1) mod (win_size x 
ack_int)

 trigger <fp2pDeliver, src, m>

 upon event <pp2pDeliver, src, ack> do

 ack_nb[src] := ack_nb[src]+1
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Fair-loss links

 FL1. Fair-loss: If a message is sent 
infinitely often by pi to pj , and neither pi or 
pj crashes, then m is delivered infinitely 
often by pj

 FL2. Finite duplication: If a message m is 
sent a finite number of times by pi to pj, m 
is delivered a finite number of times by pj

FL3. No creation: No message is delivered 
unless it was sent
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Stoppable Stubborn links

 SL1. Stubborn delivery:  if a process pi sends 
a message m to a correct process pj, and pi 
does not crash, then pj delivers m an infinite 
number of times unless pi receives a stop 
event for m

SL2.   No creation: No message is delivered 
unless it was sent
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Algorithm (ssl)

Implements: 

StoppableStubbornLinks (ssp2p).

Uses:  FairLossLinks (flp2p).

upon event <init> do

 sending =  
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Algorithm (ssl)

 

upon event < ssp2pSend, dest, m> do 

add m to sending 

while (m in sending) do 

  trigger < flp2pSend, dest, m>;

upon event < flp2pDeliver, src, m> do 

 trigger < ssp2pDeliver, src, m>; 
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Algorithm (ssl)

upon event < flp2pDeliver, src, m> do 

 trigger < ssp2pDeliver, src, m>;

upon event <ssp2pStop, m>

remove m from sending
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Perfect Stoppable Links

Properties

 PL1. Validity: If pi and pj are correct, 
then every message sent by pi to pj 
is eventually delivered by pj unless 
pi receives a stop event for m

 PL2. No duplication: No message is 
delivered (to a process) more than 
once

 PL3. No creation: No message is 
delivered unless it was sent
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Algorithm (psl)

Implements:  PerfectStoppableLinks (psp2p).

Uses:  StubbornStoppableLinks (ssp2p).

upon event < Init> do delivered := ;

upon event < psp2pSend, dest, m> do 

trigger < ssp2pSend, dest, m>; 

upon event < ssp2pDeliver, src, m> do 

 if m  delivered then  

 trigger < psp2pDeliver, src, m>;

 add m to delivered;
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Algorithm (psl)

 

upon event < psp2pStop, m> do 

 trigger <ssp2pStop, m>  
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Algorithm (fl5)

 Implements: Reliable FIFO links (fp2p).

 Uses: Perfect Stoppable Links (psp2p).

 Relies on acknowledgements messages.

 Acknowledgements are control messages.
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Algorithm (fl5)
 upon event <psp2pDeliver, src, (sn,m)> do

 wait next[src] = sn

 if (sn+1) mod ack_int = 0

 trigger <psp2pSend, src, ack>

 next[src] := (next[src]+1) mod (win_size x 
ack_int)

 trigger <fp2pDeliver, src, m>

 upon event <psp2pDeliver, src, ack> do

 ack_nb[src] := ack_nb[src]+1

 trigger psp2pStop for all messages associated 
with ack
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Reliable Broadcast in 
Practice

 What is the problem with (rb) on top of (beb) in 
practice ?

– > scalability
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Reliable Broadcast in 
Practice

 What is the problem with (rb) on top of (beb) in 
practice ?

– > scalability

 upon event <bebBroadcast, m> do

 forall pi in S do

• trigger <pp2pSend, pi, m>
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Problem with rb/beb

 1 process does all the work !

 We need to parallelize
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Algorithm (gossip)

 Implements: ReliableBroadcast (rb).

 Uses: Perfect Links (pp2p).

 Relies on spreading messages in a randomized way

 Every process forwards messages to random peers

 Probabilistic guarantees

–> liveness with probability 1
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Algorithm (gossip)

 upon event <init> do

 delivered =  
 while (true)

• for each m in delivered do

– p = random process

–  trigger <pp2pSend, p, m>



40

Algorithm (gossip)

 upon event <rbBroadcast, m>

 add m to delivered

 trigger <rbDeliver, self, m>

 upon event <pp2pDeliver, src, m> do

 if m  delivered then

• add m to delivered

• trigger <rbDeliver, src, m>
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Gossip

Experiment
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