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Group Membership 

•  In many distributed applications, processes need to 
know which processes are participating in the 
computation and which are not 

 

•  Failure detectors provide such information; however, 
that information is not coordinated (see next slide) 
even if the failure detector is perfect 
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Group Membership  
•  To illustrate the concept, we focus here on a  

group membership abstraction to coordinate the 
information about crashes 

 

•  In general, a group membership abstraction can 
also typically be used to coordinate the processes 
joinning and leaving explicitly the set of 
processes (i.e., without crashes)  
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Group Membership  
•  Like with a failure detector, the processes are 

informed about failures; we say that the processes 
install views 

•  Like with a perfect failure detector, the processes 
have accurate knowledge about failures   

•  Unlike with a perfect failure detector, the 
information about failures are coordinated: the 
processes install the same sequence of views 
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Group Membership  

Memb1. Local Monotonicity: If a process installs view 
(j,M) after installing (k,N), then j > k and M < N   

Memb2. Agreement:  No two processes install views (j,M) 
and (j,M’) such that M ≠ M’   

Memb3. Completeness:  If a process p crashes, then 
there is an integer j such that  every correct process 
eventually installs view (j,M) such that p ∉ M   

Memb4. Accuracy: If some process installs a view (i,M) 
and p ∉ M, then p has crashed   
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Group Membership 

  Events 

  Indication: <membView, V> 

 

•  Properties: 

•  Memb1, Memb2, Memb3, Memb4 
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Algorithm  (gmp) 
  Implements: groupMembership (gmp).  

  Uses:  

  PerfectFailureDetector (P). 

  UniformConsensus(Ucons). 

  upon event < Init > do  

   view := (0,S);  

   correct := S; 

   wait := true;  
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Algorithm  (gmp – cont’d) 
  upon event < crash, pi > do  

  correct := correct \  {pi}; 

 

•  upon event (correct < view.memb) and  (wait = 
false) do  

•   wait := true; 

•   trigger<ucPropose,(view.id+1,correct) >; 
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Algorithm  (gmp – cont’d) 
 

•  upon event < ucDecided, (id, memb)> do  

•   view := (id, memb); 

•   wait := false; 

•   trigger < membView, view>; 
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Group Membership and Broadcast 
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•  View synchronous broadcast is an abstraction that 
results from the combination of group membership 
and reliable broadcast  

  

•  View synchronous broadcast ensures that the 
delivery of messages is coordinated with the 
installation of views      

View Synchrony  
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View Synchrony  

Besides the properties of group membership 
(Memb1-Memb4) and reliable broadcast 
(RB1-RB4), the following property is ensured: 

    

VS: A message is vsDelivered in the view where it 
is vsBroadcast 
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  Events 

  Request:  

  <vsBroadcast, m> 

 

•   Indication:  

•   <vsDeliver, src, m> 

•   <vsView, V> 

 

View Synchrony  
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View Synchrony  

If the application keeps vsBroadcasting messages, the 
view synchrony abstraction might never be able to 
vsInstall a new view; the abstraction would be 
impossible to implement 

 

We introduce a specific event for the abstraction to 
block the application from vsBroadcasting 
messages;  this only happens when a process crashes    



19 

  Events 

  Request:  

  <vsBroadcast, m>; <vsBlock, ok>  

  Indication:  

  <vsDeliver, src, m>; <vsView, V>; <vsBlock> 

View Synchrony  
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Algorithm  (vsc) 
  Implements: ViewSynchrony (vs).  

 

  Uses:  

 GroupMembership (gmp). 

 TerminatingReliableBroadcast(trb). 

 BestEffortBroadcast(beb). 
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  upon event < Init > do  

   view := (0,S); nextView := ⊥; 

  pending := delivered := trbDone := ∅; 

  flushing := blocked := false; 

Algorithm  (vsc – cont’d) 
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Algorithm  (vsc – cont’d) 

  upon event <vsBroadcast,m> and  (blocked = false) 
do  

  delivered := delivered ∪ ⎨  m ⎬; 

  trigger <vsDeliver, self, m>; 

  trigger <bebBroadcast, [Data,view.id,m>; 
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Algorithm  (vsc – cont’d) 

  upon event<bebDeliver,src,[Data,vid,m]) do  

 If(view.id = vid) and (m ∉ delivered) and 
(blocked = false) then  

  delivered :=  delivered ∪ ⎨ m ⎬ 

       trigger <vsDeliver, src, m >; 
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 upon event < membView, V > do  
   addtoTail (pending, V); 

Algorithm  (vsc – cont’d) 

  upon (pending ≠ ∅) and (flushing = false) do  

 nextView := removeFromhead (pending); 

 flushing := true;  

 trigger <vsBlock>; 
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Algorithm  (vsc – cont’d) 

  Upon <vsBlockOk> do  

  blocked := true; 

  trbDone := ∅; 

 trigger <trbBroadcast, self, (view.id,delivered)>; 
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Algorithm  (vsc – cont’d) 

  Upon <trbDeliver, p, (vid, del)> do  

  trbDone := trbDone ∪ ⎨p⎬; 

  forall m ∈ del and m ∉ delivered do  

  delivered :=  delivered ∪ ⎨ m ⎬; 

       trigger <vsDeliver, src, m >; 
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  Upon (trbDone = view.memb) and (blocked = true) do  

  view := nextView; 

  flushing := blocked := false;  

   delivered := ∅; 

  trigger <vsView, view>; 

Algorithm  (vsc – cont’d) 
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Consensus-Based View 
Synchrony  

Instead of launching parallel instances of TRBs, plus a 
group membership, we use one consensus instance 
and parallel broadcasts for every view change 

 

Roughly, the processes exchange the messages they 
have delivered when they detect a failure, and use 
consensus to agree on the membership and the 
message set   
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Algorithm 2 (vsc) 
  Implements: ViewSynchrony (vs).  

 

  Uses:  

 UniformConsensus (uc). 

 BestEffortBroadcast(beb). 

 PerfectFailureDetector(P). 
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  upon event < Init > do  

   view := (0,S);  

  correct := S;  

  flushing := blocked := false; 

  delivered := dset := ∅; 

Algorithm 2 (vsc – cont’d) 
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Algorithm  2 (vsc – cont’d) 

  upon event <vsBroadcast,m) and  (blocked = false) do  

  delivered := delivered ∪ ⎨ m ⎬ 

  trigger <vsDeliver, self,m>; 

  trigger <bebBroadcast,[Data,view.id,m] >; 
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Algorithm 2  (vsc – cont’d) 

  upon event<bebDeliver,src,[Data,vid,m]) do  

 if (view.id = vid) and (m ∉ delivered) and (blocked 
= false) then  

  delivered :=  delivered ∪ ⎨ m ⎬; 

       trigger <vsDeliver, src, m >; 
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 upon event < crash, p > do  
   correct := correct \ ⎨ p ⎬; 
   if flushing = false then  

  flushing := true; 
  trigger <vsBlock>; 

Algorithm 2  (vsc – cont’d) 



34 

Algorithm 2  (vsc – cont’d) 

  Upon <vsBlockOk> do  

  blocked := true; 

 trigger <bebBroadcast, [DSET,view.id,delivered] >; 
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Algorithm 2  (vsc – cont’d) 

  Upon <bebDeliver, src, [DSET,vid,del] > do  

 dset:= dset ∪ (src,del); 

  if forall p ∈ correct, (p,mset) ∈ dset  then 
trigger <ucPropose, view.id+1, correct, dset >; 
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Algorithm 2  (vsc – cont’d) 
  Upon <ucDecided, id, memb, vsdset > do  

 forall (p,mset) ∈ vsdset: p ∈ memb  do 

 forall (src,m) ∈ mset: m ∉ delivered do  

   delivered :=  delivered ∪ ⎨m⎬ 

  trigger <vsDeliver, src, m>; 

   view := (id, memb); flushing := blocked := 
false; dset := delivered := ∅; 

  trigger <vsView, view>; 
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Uniform View Synchrony  

We now combine the properties of  

  group membership (Memb1-Memb4) – 
which is already uniform  

  uniform reliable broadcast (RB1-RB4) – 
which we require to be uniform 

 VS: A message is vsDelivered in the view 
where it is vsBroadcast – which is already 
uniform 
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Uniform View Synchrony  

Using uniform reliable broadcast instead of best effort 
broadcast in the previous algorithms does not 
ensure the uniformity of the message delivery  
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  upon event < Init > do  

   view := (0,S);  

  correct := S;  

  flushing := blocked := false; 

  udelivered := delivered := dset := ∅; 

  for all m: ack(m) := ∅; 

Algorithm 3 (uvsc) 
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Algorithm  3 (uvsc – cont’d) 

  upon event <vsBroadcast,m) and  (blocked = false) 
do  

  delivered := delivered ∪ ⎨m⎬; 

 trigger <bebBroadcast,[Data,view.id,m] >; 
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Algorithm 3 (uvsc – cont’d) 
  upon event<bebDeliver,src,[Data,vid,m]) do  

 if (view.id = vid) then  

  ack(m) := ack(m) ∪  ⎨src⎬; 

 if m ∉ delivered then  

   delivered := delivered ∪ ⎨ m ⎬ 

       trigger <bebBroadcast, [Data,view.id,m] >; 
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Algorithm 3 (uvsc – cont’d) 
  upon event (view ≤ ack(m)) and (m ∉ udelivered)  
do  

 udelivered := udelivered ∪ ⎨ m ⎬ 

 trigger <vsDeliver, src(m), m >; 
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 upon event < crash, p > do  
   correct := correct \ ⎨ p ⎬; 
   if flushing = false then  

   flushing := true; 
  trigger <vsBlock>; 

Algorithm 3  (uvsc – cont’d) 
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Algorithm 3  (uvsc – cont’d) 
  Upon <vsBlockOk> do  

  blocked := true; 

 trigger <bebBroadcast, 
[DSET,view.id,delivered] >; 

  Upon <bebDeliver, src, [DSET,vid,del] > do  

 dset:= dset ∪ (src,del); 

  if forall p ∈ correct, (p,mset) ∈ dset  
then trigger <ucPropose, view.id+1, 
correct, dset >; 
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Algorithm 3  (uvsc – cont’d) 
  Upon <ucDecided, id, memb, vsdset > do  

 forall (p,mset) ∈ vs-dset: p ∈ memb  do 

   forall (src,m) ∈ mset: m ∉ udelivered do  

   udelivered :=  udelivered ∪ ⎨m⎬ 

  trigger <vsDeliver, src, m>; 

   view := (id, memb); flushing := blocked := 
false; dset := delivered := udelivered := ∅; 

  trigger <vsView, view>; 


