
Distributed Systems

Group Membership and View
Synchronous Communication

Prof R. Guerraoui
Distributed Programming Laboratory

2

Group Membership

B

A

C

Who is there?

3

Group Membership

•  In many distributed applications, processes need to
know which processes are participating in the
computation and which are not

•  Failure detectors provide such information; however,
that information is not coordinated (see next slide)
even if the failure detector is perfect

4

p1

p2

p4

crash

Perfect Failure Detector
suspect(p2,p3)

suspect(p2)

suspect(p2,p3)

suspect(p3) suspect()

p3
crash

5

p1

p2

p4

crash

Group Membership
 V1 = (p1,p4)

 V1 = (p1,p4)

p2
crash

6

Group Membership
•  To illustrate the concept, we focus here on a

group membership abstraction to coordinate the
information about crashes

•  In general, a group membership abstraction can
also typically be used to coordinate the processes
joinning and leaving explicitly the set of
processes (i.e., without crashes)

7

Group Membership
•  Like with a failure detector, the processes are

informed about failures; we say that the processes
install views

•  Like with a perfect failure detector, the processes
have accurate knowledge about failures

•  Unlike with a perfect failure detector, the
information about failures are coordinated: the
processes install the same sequence of views

8

Group Membership

Memb1. Local Monotonicity: If a process installs view
(j,M) after installing (k,N), then j > k and M < N

Memb2. Agreement: No two processes install views (j,M)
and (j,M’) such that M ≠ M’

Memb3. Completeness: If a process p crashes, then
there is an integer j such that every correct process
eventually installs view (j,M) such that p ∉ M

Memb4. Accuracy: If some process installs a view (i,M)
and p ∉ M, then p has crashed

9

Group Membership

  Events

  Indication: <membView, V>

•  Properties:

•  Memb1, Memb2, Memb3, Memb4

10

Algorithm (gmp)
  Implements: groupMembership (gmp).

  Uses:

  PerfectFailureDetector (P).

  UniformConsensus(Ucons).

  upon event < Init > do

  view := (0,S);

  correct := S;

  wait := true;

11

Algorithm (gmp – cont’d)
  upon event < crash, pi > do

  correct := correct \ {pi};

•  upon event (correct < view.memb) and (wait =
false) do

•  wait := true;

•  trigger<ucPropose,(view.id+1,correct) >;

12

Algorithm (gmp – cont’d)

•  upon event < ucDecided, (id, memb)> do

•  view := (id, memb);

•  wait := false;

•  trigger < membView, view>;

13

p1

p2

p4

crash

Algorithm (gmp)

UCons((p1,p2,p4);(p1,p2,p4))

p3
crash

UCons((p1,p4);(p1,p4))

UCons((p1,p3,p4);(p1,p2,p4))

UCons((p1,p4);(p1,p4))

14

Group Membership and Broadcast

crash

membView(p1,p3)

p1

p2

p3

m

m

membView(p1,p3)

15

•  View synchronous broadcast is an abstraction that
results from the combination of group membership
and reliable broadcast

•  View synchronous broadcast ensures that the
delivery of messages is coordinated with the
installation of views

View Synchrony

16

View Synchrony

Besides the properties of group membership
(Memb1-Memb4) and reliable broadcast
(RB1-RB4), the following property is ensured:

VS: A message is vsDelivered in the view where it
is vsBroadcast

17

  Events

  Request:

  <vsBroadcast, m>

•  Indication:

•  <vsDeliver, src, m>

•  <vsView, V>

View Synchrony

18

View Synchrony

If the application keeps vsBroadcasting messages, the
view synchrony abstraction might never be able to
vsInstall a new view; the abstraction would be
impossible to implement

We introduce a specific event for the abstraction to
block the application from vsBroadcasting
messages; this only happens when a process crashes

19

  Events

  Request:

  <vsBroadcast, m>; <vsBlock, ok>

  Indication:

  <vsDeliver, src, m>; <vsView, V>; <vsBlock>

View Synchrony

20

Algorithm (vsc)
  Implements: ViewSynchrony (vs).

  Uses:

 GroupMembership (gmp).

 TerminatingReliableBroadcast(trb).

 BestEffortBroadcast(beb).

21

  upon event < Init > do

  view := (0,S); nextView := ⊥;

  pending := delivered := trbDone := ∅;

  flushing := blocked := false;

Algorithm (vsc – cont’d)

22

Algorithm (vsc – cont’d)

  upon event <vsBroadcast,m> and (blocked = false)
do

  delivered := delivered ∪ ⎨ m ⎬;

  trigger <vsDeliver, self, m>;

  trigger <bebBroadcast, [Data,view.id,m>;

23

Algorithm (vsc – cont’d)

  upon event<bebDeliver,src,[Data,vid,m]) do

 If(view.id = vid) and (m ∉ delivered) and
(blocked = false) then

  delivered := delivered ∪ ⎨ m ⎬

  trigger <vsDeliver, src, m >;

24

 upon event < membView, V > do
  addtoTail (pending, V);

Algorithm (vsc – cont’d)

  upon (pending ≠ ∅) and (flushing = false) do

 nextView := removeFromhead (pending);

 flushing := true;

 trigger <vsBlock>;

25

Algorithm (vsc – cont’d)

  Upon <vsBlockOk> do

  blocked := true;

  trbDone := ∅;

 trigger <trbBroadcast, self, (view.id,delivered)>;

26

Algorithm (vsc – cont’d)

  Upon <trbDeliver, p, (vid, del)> do

  trbDone := trbDone ∪ ⎨p⎬;

  forall m ∈ del and m ∉ delivered do

  delivered := delivered ∪ ⎨ m ⎬;

  trigger <vsDeliver, src, m >;

27

  Upon (trbDone = view.memb) and (blocked = true) do

  view := nextView;

  flushing := blocked := false;

  delivered := ∅;

  trigger <vsView, view>;

Algorithm (vsc – cont’d)

28

Consensus-Based View
Synchrony

Instead of launching parallel instances of TRBs, plus a
group membership, we use one consensus instance
and parallel broadcasts for every view change

Roughly, the processes exchange the messages they
have delivered when they detect a failure, and use
consensus to agree on the membership and the
message set

29

Algorithm 2 (vsc)
  Implements: ViewSynchrony (vs).

  Uses:

 UniformConsensus (uc).

 BestEffortBroadcast(beb).

 PerfectFailureDetector(P).

30

  upon event < Init > do

  view := (0,S);

  correct := S;

  flushing := blocked := false;

  delivered := dset := ∅;

Algorithm 2 (vsc – cont’d)

31

Algorithm 2 (vsc – cont’d)

  upon event <vsBroadcast,m) and (blocked = false) do

  delivered := delivered ∪ ⎨ m ⎬

  trigger <vsDeliver, self,m>;

  trigger <bebBroadcast,[Data,view.id,m] >;

32

Algorithm 2 (vsc – cont’d)

  upon event<bebDeliver,src,[Data,vid,m]) do

 if (view.id = vid) and (m ∉ delivered) and (blocked
= false) then

  delivered := delivered ∪ ⎨ m ⎬;

  trigger <vsDeliver, src, m >;

33

 upon event < crash, p > do
  correct := correct \ ⎨ p ⎬;
  if flushing = false then

  flushing := true;
  trigger <vsBlock>;

Algorithm 2 (vsc – cont’d)

34

Algorithm 2 (vsc – cont’d)

  Upon <vsBlockOk> do

  blocked := true;

 trigger <bebBroadcast, [DSET,view.id,delivered] >;

35

Algorithm 2 (vsc – cont’d)

  Upon <bebDeliver, src, [DSET,vid,del] > do

 dset:= dset ∪ (src,del);

  if forall p ∈ correct, (p,mset) ∈ dset then
trigger <ucPropose, view.id+1, correct, dset >;

36

Algorithm 2 (vsc – cont’d)
  Upon <ucDecided, id, memb, vsdset > do

 forall (p,mset) ∈ vsdset: p ∈ memb do

 forall (src,m) ∈ mset: m ∉ delivered do

  delivered := delivered ∪ ⎨m⎬

  trigger <vsDeliver, src, m>;

   view := (id, memb); flushing := blocked :=
false; dset := delivered := ∅;

  trigger <vsView, view>;

37

Uniform View Synchrony

We now combine the properties of

 group membership (Memb1-Memb4) –
which is already uniform

 uniform reliable broadcast (RB1-RB4) –
which we require to be uniform

 VS: A message is vsDelivered in the view
where it is vsBroadcast – which is already
uniform

38

Uniform View Synchrony

Using uniform reliable broadcast instead of best effort
broadcast in the previous algorithms does not
ensure the uniformity of the message delivery

39

Uniformity?

crash

vsView(p1,p3)

p1

p2

p3

m

m

vsView(p1,p3)

vsDeliver(m) m

m

40

  upon event < Init > do

  view := (0,S);

  correct := S;

  flushing := blocked := false;

  udelivered := delivered := dset := ∅;

  for all m: ack(m) := ∅;

Algorithm 3 (uvsc)

41

Algorithm 3 (uvsc – cont’d)

  upon event <vsBroadcast,m) and (blocked = false)
do

  delivered := delivered ∪ ⎨m⎬;

 trigger <bebBroadcast,[Data,view.id,m] >;

42

Algorithm 3 (uvsc – cont’d)
  upon event<bebDeliver,src,[Data,vid,m]) do

 if (view.id = vid) then

  ack(m) := ack(m) ∪ ⎨src⎬;

 if m ∉ delivered then

  delivered := delivered ∪ ⎨ m ⎬

  trigger <bebBroadcast, [Data,view.id,m] >;

43

Algorithm 3 (uvsc – cont’d)
  upon event (view ≤ ack(m)) and (m ∉ udelivered)
do

 udelivered := udelivered ∪ ⎨ m ⎬

 trigger <vsDeliver, src(m), m >;

44

 upon event < crash, p > do
  correct := correct \ ⎨ p ⎬;
  if flushing = false then

  flushing := true;
  trigger <vsBlock>;

Algorithm 3 (uvsc – cont’d)

45

Algorithm 3 (uvsc – cont’d)
  Upon <vsBlockOk> do

  blocked := true;

 trigger <bebBroadcast,
[DSET,view.id,delivered] >;

  Upon <bebDeliver, src, [DSET,vid,del] > do

 dset:= dset ∪ (src,del);

  if forall p ∈ correct, (p,mset) ∈ dset
then trigger <ucPropose, view.id+1,
correct, dset >;

46

Algorithm 3 (uvsc – cont’d)
  Upon <ucDecided, id, memb, vsdset > do

 forall (p,mset) ∈ vs-dset: p ∈ memb do

  forall (src,m) ∈ mset: m ∉ udelivered do

  udelivered := udelivered ∪ ⎨m⎬

  trigger <vsDeliver, src, m>;

   view := (id, memb); flushing := blocked :=
false; dset := delivered := udelivered := ∅;

  trigger <vsView, view>;

