
Distributed Systems

Terminating Reliable
Broadcast

Prof R. Guerraoui
Distributed Programming Laboratory

2

Terminating Reliable Broadcast

B

A

C

m

m

3

Terminating Reliable Broadcast

•  Like reliable broadcast, terminating reliable
broadcast (TRB) is a communication primitive
used to disseminate a message among a set
of processes in a reliable way

•  TRB is however strictly stronger than
(uniform) reliable broadcast

4

p1

p2

p3

broadcast(m)
crash

(Uniform) Reliable Broadcast
 deliver(m)

 deliver(m)

5

p1

p2

p3

crash

?

(Uniform) Reliable Broadcast

?

broadcast(m)

6

p1

p2

p3

broadcast(m)
crash

Terminating Reliable Broadcast
 deliver(m)

 deliver(m)

7

p1

p2

p3

crash

Terminating Reliable Broadcast

broadcast(m)

 deliver(ϕ)

 deliver(ϕ)

8

Terminating Reliable Broadcast
•  Like with reliable broadcast, correct

processes in TRB agree on the set of
messages they deliver

•  Like with (uniform) reliable broadcast, every
correct process in TRB delivers every
message delivered by any process

•  Unlike with reliable broadcast, every correct
process delivers a message, even if the
broadcaster crashes

9

Terminating Reliable Broadcast

•  The problem is defined for a specific broadcaster
process pi = src (known by all processes)

•  Process src is supposed to broadcast a message
m (distinct from ϕ)

•  The other processes need to deliver m if src is
correct but may deliver ϕ if src crashes

10

Terminating Reliable Broadcast (pi)

TRB1. Integrity: If a process delivers a message m, then
either m is ϕ or m was broadcast by src

TRB2. Validity: If the sender src is correct and broadcasts
a message m, then src eventually delivers m

TRB3. (Uniform) Agreement: For any message m, if a
correct (any) process delivers m, then every correct
process delivers m

TRB4. Termination: Every correct process eventually
delivers exactly one message

11

Terminating Reliable Broadcast
  Events

  Request: <trbBroadcast, m>

  Indication: <trbDeliver, p, m>

•  Properties:

•  TRB1, TRB2, TRB3, TRB4

12

Algorithm (trb)
  Implements: trbBroadcast (trb).

  Uses:

  BestEffortBroadcast (beb).

  PerfectFailureDetector (P).

  Consensus(cons).

  upon event < Init > do

  prop := ⊥;

  correct := S;

13

Algorithm (trb – cont’d)

  upon event < trbBroadcast, m> do

  trigger < bebBroadcast, m>;

•  upon event < crash, src > and (prop = ⊥) do

•  prop := ϕ;

14

Algorithm (trb – cont’d)
  upon event <bebDeliver, src, m> and (prop = ⊥) do

  prop := m;

•  upon event (prop ≠⊥) do

•  trigger < Propose, prop >;

•  upon event < Decide, decision> do

•  trigger < trbDeliver, src, decision>;

15

p1

p2

p3

crash

Algorithm (trb); src = p2

broadcast(m)

 deliver(ϕ -m)

 deliver(ϕ -m)

UCons(ϕ,ϕ-m)

UCons(m,ϕ-m)

16

Terminating Reliable Broadcast

•  The TRB algorithm uses the perfect failure
detector P (i.e., P is sufficient)

•  Is P also necessary?

•  Is there an algorithm that implements TRB with a
failure detector that is strictky weaker than P?
(this would mean that P is not necessary)

•  Is there an algorithm that uses TRB to implement
P (this would mean that P is necessary)

17

Terminating Reliable Broadcast
•  We give an algorithm that implements P

using TRB; more precisely, we assume that
every process pi can use an infinite number
of instances of TRB where pi is the sender src

•  1. Every process pi keeps on
trbBroadcasting messages mi1, mi2, etc

•  2. If a process pk delivers ϕi, pk suspects pi

•  NB. The algorithm uses (non-uniform) TRB

