
DISTRIBUTED ALGORITHMS 2015/2016

Exercise Session 3 - Solutions
Causal and Total Order Broadcast

Exercise 1

Can we devise a broadcast algorithm that does not ensure the causal delivery property but only its nonuniform
variant: no correct process pi delivers a message m2 unless pi has already delivered every message m1 such that
m1 → m2?

The answer is no. Assume by contradiction that some algorithm does not ensure the causal delivery
property but ensures its nonuniform variant. This means that the algorithm has some execution in which
some process p delivers some message m without delivering a message m′ that causally precedes m.
Given that we assume a model where processes do not self-destruct, p might as well be correct, in which
case it violates even the nonuniform variant.

Exercise 2

Suggest an optimization of the garbage collection scheme of Algorithm 1’ (slide 24).
When removing a message m from the past, we can also remove all the messages that causally precede

this message — and then recursively those that causally precede these. This means that a message stored
in the past must be stored with its own distinct past.

Exercise 3

Why the condition on slide 30 is VC[pk] ≥ VCx[pk] and not just VC[pk] = VCx[pk]? Can you construct an
execution where the local vector clock is greater than the received local clock for one place?

The greater or equal condition is important in order to handle old, non-causal messages. Just consider
the case when in the beginning all processes send a message. Each message will carry a vector clock with
all zeroes. When a process delivers one such message, the vector clock of the process gets incremented
at a position matching the rank of the sender. During the next iteration, the process needs to deliver a
message containing all zeroes in its vector clock, while the process has a non-zero value in at least one
position.

Exercise 4

Can we devise a best-effort broadcast algorithm that satisfies the causal delivery property without being a causal
broadcast algorithm, i.e., without satisfying the agreement property of a reliable broadcast?

The answer is no. Assume by contradiction that some broadcast algorithm ensures the causal delivery
property and is not reliable but best-effort; define an instance co of the corresponding abstraction, where
processes co-broadcast and co-deliver messages.

The only possibility for an algorithm to ensure the properties of best-effort broad- cast but not those
of reliable broadcast is to violate the agreement property: there must be some execution of the algorithm
where some correct process p co-delivers a message m that some other process q does not ever co-deliver.

1/3

2016/2017



DISTRIBUTED ALGORITHMS 2015/2016

Because the algorithm is best-effort, this can only happen if the process s that co-broadcasts the message
is faulty.

Assume now that after co-delivering m, process p co-broadcasts a message m’. Given that p is correct
and that the broadcast is best-effort, all correct processes, including q, will co-deliver m’. Given that m
precedes m’ in causal order, q must have co-delivered m as well, a contradiction. Hence, any best-effort
broadcast that satisfies the causal delivery property satisfies agreement and is, thus, also a reliable broadcast.

Exercise 5

The Uniform Reliable Broadcast Algorithm requires a process to receive an acknowledgment from all nonfaulty
processes before it can deliver a message. The acknowledgment is needed because when a process invokes the
underlying best-effort broadcast and then crashes, all components of the process are affected and stop (including the
best- effort broadcast module and any further underlying modules, such as the modules that may implement perfect
links). The unit of failure is a process, not a module.

For this exercise only, consider an idealized and nonrealistic system model, where some component may invoke
infallible lower-level components. In this model, the unit of failure is not a process but a module. Describe an
implementation of uniform reliable broadcast that uses an infallible perfect point-to-point links abstraction in this
idealized model. Do not use failure detectors of any kind.

Hint: You may get some inspiration from the solution to last week’s exercise 2.
Suppose an “IdealPerfectPointToPointLinks” module is available in this idealized system model. In

the following algorithm, the sender sends the broadcast message to itself over the ideal perfect links;
upon delivering a message m over the ideal perfect links that has not been delivered yet, it resends m to
all processes and urb-delivers it.

Implements:
UniformReliableBroadcast, instance urb.

Uses:
IdealPerfectPointToPointLinks, instance idealpl.

upon event <urb, Init> do
delivered := ∅;

upon event <urb, Broadcast | m> do
trigger <idealpl, Send | self, (DATA, self, m)>;

upon event <idealpl, Deliver | p, (DATA, s, m)> do
if m 6∈ delivered then

delivered := delivered ∪ (m);
forall q ∈ Π

trigger <idealpl, Send | q, (DATA, s, m)>;
trigger <urb, Deliver | s, m>;

The uniform agreement property holds because every process sends m with the infallible point-to-point
links primitive before it urb-delivers m. The infallible underlying module does not crash in this idealized
model. If a process crashes, only the broadcast module crashes. Any urb-delivered message will never be
forgotten by the ideal link module and will consequently be urb-delivered by every correct process.

2/3

2016/2017



DISTRIBUTED ALGORITHMS 2015/2016

Exercise 6

Would it make sense to add the total-order property to the best-effort broadcast?

The resulting abstraction would not make much sense in a failure-prone environment, as it would
not preclude the following scenario. Assume that a process p broadcasts several messages with best-effort
properties and then crashes.

Some correct processes might end up delivering all those messages (in the same order) whereas other
correct processes might end up not delivering any message.

Exercise 7

What happens in our consensus-based total order broadcast algorithm if the set of messages decided on is not sorted
deterministically

a) after the decision but is sorted prior to the proposal,

If the deterministic sorting is done prior to proposing the set for consensus, instead of a posteriori
upon deciding, the processes would not agree on a set but on a sequence of messages. But if they
to-deliver the messages in decided order, the algorithm still ensures the total order property.

b) neither a priori nor a posteriori?

If the messages, on which the algorithm agrees in consensus, are never sorted deterministically
within every batch (neither a priori nor a posteriori), then the total order property does not hold.
Even if the processes decide on the same batch of messages, they might to-deliver the messages
within this batch in a different order. In fact, the total order property would be ensured only with
respect to batches of messages, but not with respect to individual messages. We thus get a coarser
granularity in the total order.

3/3

2016/2017


