
DISTRIBUTED ALGORITHMS 2016/2017

Exercise Session 5
Broadcast - Reliable, Uniform, Causal, and Total-Order

Exercise 1

If an algorithm implements Total Order broadcast, does it also satisfy the properties of the following?

1. Causal broadcast

2. Uniform Reliable broadcast

For each of the two (separately), either explain why it does, or give an execution that is allowed by total order
broadcast, but is not allowed by the corresponding broadcast abstraction.
Answer. For each of the two (separately), either explain why it does, or give an execution that is allowed by total
order broadcast, but is not allowed by the corresponding broadcast abstraction.

See Figure 1 and Figure 2.

Figure 1: An execution that satisfies Total Order Broadcast but does not satisfy Causal Broadcast.

Figure 2: An execution that satisfies Total Order Broadcast but does not satisfy Uniform Reliable Broadcast.

Exercise 2

Consider a broadcast algorithm that has the following properties:
Validity: For any two processes pi and pj, if pi and pj are correct, then every message broadcast by pi is eventually
delivered by pj.
No duplication: No message is delivered more than once.
No creation: If a message m is delivered by some process pj, then m was previously broadcast by some process pi.
Causal delivery: No process pi delivers a message m2 unless pi has already delivered every message m1 such that
m1 → m2.

Does this broadcast algorithm satisfy the agreement property (if a message m is delivered by some correct process,
them m is eventually delivered by every correct process)? Motivate your answer.
Answer. This is a best-effort causal broadcast abstraction. Accordingly, on a crash-free execution (all processes are
correct) agreement is guaranteed due to validity.

Of course, the crash-free case is not that interesting, so lets discuss what happens in case there are crashes. What
happens when a message is broadcast? A broadcast of message m by process p enforces all other processes to receive
all the messages that belong to the causal past of m.1 This, of course, includes the messages that were delivered and

11 If p does not crash while broadcasting m, case that could lead to m not being delivered by every process.

1/2



DISTRIBUTED ALGORITHMS 2016/2017
the messages that were broadcast by p before message m. It should be clear that this is a direct consequence of the
definition of causality: A message m1 causally precedes a message m2 (m1 ⇒ m2) when:

1. both are broadcasts of the same process and m1 was broadcast before m2

2. m1 is a broadcast of p1 and m2 is a broadcast of p2 and m2 was sent after p2 delivered m1

3. m1 ⇒ m′ and m′ ⇒ m2 entails m1 ⇒ m2 (transitivity)

So, in an execution where the correct processes keep broadcasting messages, the causal delivery property ensures
that all the delivered messages of a process before m will be delivered before delivering m, ensuring agreement even
in the case of crashes. However, we cannot guarantee that every process will send an infinite number of messages,
so the following execution is possible:

As you can see, p1 delivers message m sent by p0 just before p0 crashed. Due to the crash, m was not delivered
by p2. If p1 stays inactive (as it happens in the execution above), p2 is not guaranteed to deliver message m, hence
violating agreement. Consequently, the broadcast algorithm of the question does not guarantee the agreement
property in executions that there are crashes.

2/2


