
DISTRIBUTED ALGORITHMS 2015/2016

Exercise Session 6
NBAC, TRB, and VSC

November 12, 2012

Problem 1

Devise two algorithms that, without consensus, implement weaker specifications of NBAC by replacing the
termination property with the following ones:

1. Weak termination: Let p be a distinguished process, known to all other processes. If p does not crash then all
correct processes eventually decide. Your algorithm may use a perfect failure detector.

2. Very weak termination: If no process crashes, then all processes decide. Is a failure detector needed to
implement this algorithm?

Solution

The first algorithm may rely on the globally known process p to enforce termination. The algorithm
uses a perfect failure detector P and works as follows. All processes send their proposal over a point-
to-point link to p. This process collects the proposals from all processes that P does not detect to have
crashed. Once process p knows something from every process in the system, it may decide unilaterally.
In particular, it decides COMMIT if all processes propose COMMIT and no process is detected by P , and
it decides ABORT otherwise, i.e., if some process proposes ABORT or is detected by P to have crashed.
Process p then uses best-effort broadcast to send its decision to all processes. Any process that delivers
the message with the decision from p decides accordingly. If p crashes, then all processes are blocked.

Of course, the algorithm could be improved in some cases, because the processes might figure out
the decision by themselves, such as when p crashes after some correct process has decided, or when
some correct process decides ABORT. However, the improvement does not always work: if all correct
processes propose COMMIT but p crashes before any other process, then no correct process can decide.
This algorithm is also known as the Two-Phase Commit (2PC) algorithm. It implements a variant of
atomic commitment that is blocking.

The second algorithm is simpler because it only needs to satisfy termination if all processes are correct.
All processes use best-effort broadcast to send their proposals to all processes. Every process waits to
deliver proposals from all other processes. If a process obtains the proposal COMMIT from all processes,
then it decides COMMIT; otherwise, it decides ABORT. Note that this algorithm does not make use of
any failure detector.

Problem 2

Can we implement TRB with the eventually perfect failure detector �P, if we assume that at least one process can
crash?

1/3

Exercise Session 7
      NBAC, TRB



DISTRIBUTED ALGORITHMS 2015/2016
Solution

The answer is no. Consider an instance trb of TRB with sender process s. We show that it is impossible to
implement TRB from an eventually perfect failure-detector primitive �P, if even one process can crash.

Consider an execution E1 , in which process s crashes initially and observe the possible actions for
some correct process p: due to the termination property of TRB, there must be a time T at which p
trb-delivers ⊥.

Consider a second execution E2 that is similar to E1 up to time T, except that the sender s is correct
and trb-broadcasts some message m, but all communication messages to and from s are delayed until after
time T. The failure detector behaves in E2 as in E1 until after time T. This is possible because the failure
detector is only eventually perfect. Up to time T, process p cannot distinguish E1 from E2 and trb-delivers
⊥. According to the agreement property of TRB, process s must trb-deliver as well, and s delivers exactly
one message due to the termination property. But this contradicts the validity property of TRB, since s is
correct, has trb-broadcast some message m 6= ⊥, and must trb-deliver m.

Problem 3

In this problem we will change the view-synchronous communication (VSC) abstraction in order to allow
joins of new processes. Answer to the following questions:

1. Are the properties of VSC (as given in the class) suitable to accommodate the joins of new processes.
Why / Why not?

2. Change the properties of VSC, so that they allow for implementations that support the joins of new
processes. (Hint: focus on the properties of group membership)

Solution

Solution 1.1

No, the properties are not suitable for joins. The most obvious property is Local Monotonicity. Joins
imply that the set of correct processes in a view can increase, and this would break the local monotonic-
ity property. Furthermore, Completeness and Accuracy only refer to crashes, without imposing any
conditions on the correctness of joins.

Solution 1.2

First, we need to add a 〈Join|p〉 event to allow new processes to join the group. After a process emits
such an event, we says that it requested to join. The VSC layer emits a 〈JoinOk〉 event to the application
when it has successfully joined a view. The application can start emitting broadcast requests after it
receives the JoinOk event.

Group membership properties

Let us first look at the four group membership properties.
View Monotonicity. The monotonicity property of VSC (GM1) ensures that the number of processes

in a view decreases over time. Since new processes can join, this needs to change: We conside three
possibilities:

• Get rid of this property entirely.

• Require that views do not change for nothing: If a process installs views (j, N) and (j + 1, M), then
M 6= N.

2/3



DISTRIBUTED ALGORITHMS 2015/2016
• Require that views do not oscillate (i.e., travel back in time): if a process p installs views (i, M) and
(j, N) where j > i, q ∈ M, and q 6∈ N, then for all k > j, if p installs (j, O), then q 6∈ O.

With the second option, the new property ensures that consecutive views have different sets of processes,
i.e., that the view cannot change if there is no change in the correct set of processes. Notice, however,
that it is still possible for two views to have the same set of processes, e.g., if a processes joins and then
crashes. It is also possible for a process to repeatedly be included and excluded from a view.

With the third option, once a process is excluded from a view it can never come back.
Uniform agreement. The uniform agreement property of VSC (GM2) ensures that all processes install

the same sequence of view. We will keep this property.
Completeness. If we choose the third version of monotonicity, then we can keep the completeness

property of the group membership abstraction. If we choose one of the first two, we need to make
some changes: Because the sequence of views is no longer monotonic, we need to strengthen a bit the
completeness property of VSC (GM3): If a process p crashes, then there is i ∈N such that for all correct
process q, if j > i and q installs view (j, M), then p 6∈ M.

To ensure that processes which want to join eventually join a view, we add the following completeness
property: If a correct process p requests to join, then there is an integer i such that every correct process
eventually installs view (i, M) such that p ∈ M.

Accuracy. If a process p installs views (i, M) and (i + 1, N) where q ∈ M but q 6∈ N, then q has
crashed.

On top of those properties, we will also require that a process is included in a view only if it requested
so.

Validity. If some process installs a view (i, M) and some process q is in M, then q previously requested
to join or q ∈ Π.

Broadcast properties

Let us now look at the broadcast properties of VSC. Those are the same of for reliable broadcast (RB1,2,3,4).
We have two options: either a process which joins needs to “catch-up” on all previously delivered
messages, or a new process can just start with the messages of the first view in which it is included.

If we choose the first option, then we can leave RB1,2,3,4 unchanged.
If we choose the second option, then we need to relax Agreement (RB4) so that a process need to

deliver only the messages sent in the view to which it participates: If message m is delivered by some
correct process in view (i, M), then m is eventually delivered by all the process belonging to M. This way,
if p 6∈ M then p does not have to deliver m.

View Synchrony

Finally, we will keep the View Synchrony (VS) property as is.

3/3


