DISTRIBUTED ALGORITHMS

Exercise Session 7
NBAC, TRB

Problem 1

Devise two algorithms that, without consensus, implement weaker specifications of NBAC by replacing the
termination property with the following ones:

1. Weak termination: Let p be a distinguished process, known to all other processes. If p does not crash then all
correct processes eventually decide. Your algorithm may use a perfect failure detector.

2. Very weak termination: If no process crashes, then all processes decide. Is a failure detector needed to
implement this algorithm?

Solution

The first algorithm may rely on the globally known process p to enforce termination. The algorithm
uses a perfect failure detector P and works as follows. All processes send their proposal over a point-
to-point link to p. This process collects the proposals from all processes that P does not detect to have
crashed. Once process p knows something from every process in the system, it may decide unilaterally.
In particular, it decides COMMIT if all processes propose COMMIT and no process is detected by P, and
it decides ABORT otherwise, i.e., if some process proposes ABORT or is detected by P to have crashed.
Process p then uses best-effort broadcast to send its decision to all processes. Any process that delivers
the message with the decision from p decides accordingly. If p crashes, then all processes are blocked.

Of course, the algorithm could be improved in some cases, because the processes might figure out
the decision by themselves, such as when p crashes after some correct process has decided, or when
some correct process decides ABORT. However, the improvement does not always work: if all correct
processes propose COMMIT but p crashes before any other process, then no correct process can decide.
This algorithm is also known as the Two-Phase Commit (2PC) algorithm. It implements a variant of
atomic commitment that is blocking.

The second algorithm is simpler because it only needs to satisfy termination if all processes are correct.
All processes use best-effort broadcast to send their proposals to all processes. Every process waits to
deliver proposals from all other processes. If a process obtains the proposal COMMIT from all processes,
then it decides COMMIT; otherwise, it decides ABORT. Note that this algorithm does not make use of
any failure detector.

Problem 2

Can we implement TRB with the eventually perfect failure detector oP, if we assume that at least one process can
crash?



DISTRIBUTED ALGORITHMS
Solution

The answer is no. Consider an instance trb of TRB with sender process s. We show that it is impossible to
implement TRB from an eventually perfect failure-detector primitive ¢P, if even one process can crash.

Consider an execution E; , in which process s crashes initially and observe the possible actions for
some correct process p: due to the termination property of TRB, there must be a time T at which p
trb-delivers L.

Consider a second execution E; that is similar to E; up to time T, except that the sender s is correct
and trb-broadcasts some message m, but all communication messages to and from s are delayed until after
time T. The failure detector behaves in E; as in E; until after time T. This is possible because the failure
detector is only eventually perfect. Up to time T, process p cannot distinguish E; from E; and trb-delivers
L. According to the agreement property of TRB, process s must trb-deliver as well, and s delivers exactly
one message due to the termination property. But this contradicts the validity property of TRB, since s is
correct, has trb-broadcast some message m # L, and must trb-deliver m.






