Distributed computing on mobile tiny devices

Rachid Guerraoui EPFL

A world of tiny mobile devices

What computing model?

(1) Mobility
(2) Crashes
(3) Privacy
(4) Security

The march of the penguins

The march of the penguins

The group is threatened if more than a threshold dies on the way back to the sea

If a penguin starts its trip with a very low temperature, the probability that it reaches the sea is very low

The escort

- Provide each penguin with a computing device to:
 - measure its temperature;
 - trigger an alert if a threshold (say 5) has a very low temperature

Assumptions

Every device holds a finite counter (<6)
 Its initial value is 1 if the penguin has a low temperature and 0 otherwise

- A pair of devices communicate if they get close enough
 - Every pair of devices eventually meet

The problem

All devices eventually output "alert" iff at least 5 initial values are 1

Algorithm

When two devices meet, one keeps in its counter the sum of the values whereas the other puts it back to 0

Any device with value 5 triggers the alert

Population protocols (DF01,AADFP'04)

A population **P** is a set of **agents**

Every agent has a **bounded** memory independent of the size of the system

Algorithms are uniform and anonymous

Population protocols

The agents are asynchronous and have no control over their mobility pattern

A pair of agents communicate if they get close to each other (one is the *initiator*)

 Every interaction that is always possible eventually happens (*fairness*)

Population protocol

Input; Output; State S
InMap In; OutMap Out
Transition δ

Configuration / Execution

A configuration is a set of states of all agents

An execution is a sequence of configurations

• An infinite execution E is **fair** if for any transition $\delta(C,C')$, if C appears infinitely in E, then C' appears infinitely in E

A computation is a fair execution

Stability and convergence

• A configuration C is **stable** if for every C' such as $\delta(C,C')$, we have: Out(C) = Out(C')

An infinite execution converges if it has a stable configuration

Back to the Penguins

Input = $\{0,1\}$ Output = $\{ALARM, OK\}$ S = $\{0,1,2,3,4,5\}$ In (identity): 0 → 0, 1 → 1
 Out: $\{0, 1, 2, 3, 4\}$ → OK
 5 → ALARM

Transition

More generally (AAD06)

Theorem: population protocols compute exactly first order Presburger's arithmetic: +, -, =, >, or, not, and, ...

NB. Not as powerful as Peano's arithmetic which also include *

(1) Mobility
(2) Crashes
(3) Privacy
(4) Security

But what if?

One of the agents fail (say by crashing at some inappropriate time)

An agent might crash exactly when it reaches value 4

Reliable algorithm

Every agent performs *twice* the original algorithm: O1 and O2

When two agent communicate, one acts as the initiator for O1 and the other as the initiator for O2

More generally (DFGR06)

Theorem: population protocols compute exactly Presburger's arithmetic with a constant number of crashes

This talk

(1) Mobility
(2) Crashes
(3) Privacy
(4) Security

What about privacy?

 How can we hide the initial values from curious agents?

How can we compute a result while preventing any agent from figuring out, at any point in time, any information besides its own input and the result of the computation?

What about privacy?

How can we make it impossible for a curious agent to distinguish the situation where exactly 5 penguins have low temperature from the situation where more do?

How to ensure privacy?

 An agent cannot use crypto (not even signatures because of anonymity)

An agent can see the entire state of the agent it is interacting with: hence no secret keys are possible

Obfuscation

More generally (DFGR07)

Theorem: population protocols can privately compute exactly first order Presburger's arithmetic

This talk

(1) Mobility
(2) Crashes
(3) Privacy
(4) Security

What if agents can be malicious?

What can we compute with one malicious agent? (arbitrary transitions)

More generally (GR07)

Theorem: population protocols cannot compute any non-trivial predicate with a single malicious agent

NB. A predicate is *trivial* if every agent can determine its output based only on its input

Community protocols (GR07)

Every agent has:

+

- A bounded memory where it can execute arithmetics (as in the original population model)
- A bounded set of slots to store identities and test (only) for their equality

Community protocols (GR07)

 Theorem: community protocols can exactly compute every
 symmetric predicate that can be (Turing) computed in *n log n* space