

Distributed computing on
mobile tiny devices

Rachid Guerraoui
EPFL

A world of tiny mobile devices

What computing model?

(1) Mobility

Overview

(2) Crashes
(3) Privacy
(4) Security

The march of the penguins

  The group is threatened if more than a threshold
dies on the way back to the sea

  If a penguin starts its trip with a very low
temperature, the probability that it reaches the sea
is very low

The march of the penguins

The escort
 Provide each penguin with a computing
device to:
  measure its temperature;
  trigger an alert if a threshold (say 5)
has a very low temperature

Assumptions

  Every device holds a finite counter (<6)
  Its initial value is 1 if the penguin has a low
temperature and 0 otherwise

  A pair of devices communicate if they get
close enough
 Every pair of devices eventually meet

The problem

 All devices eventually output “alert”
iff at least 5 initial values are 1

Algorithm ?
0 1 1 0 1 1 0 0 1

0 1 2 0 2 2 0 0 2

0 3 0 0 2 3 0 0 2

0 0 0 0 5 0 0 0 5

Algorithm?

0 1 1 0 0 1 0 0 0

0 1 2 0 0 2 0 0 0

0 3 2 0 0 3 0 0 0

0 3 5 0 5 5 0 0 0 0

Algorithm

 When two devices meet, one keeps in its
counter the sum of the values whereas the
other puts it back to 0

 Any device with value 5 triggers the alert

Algorithm

0 1 1 0 1 1 0 0 1

0 1 0 0 1 2 0 0 1

0 0 0 0 2 3 0 0 0

0 0 0 0 5 0 0 0 0

Algorithm

0 1 1 0 0 1 0 0 0

0 1 0 0 0 2 0 0 0

0 0 0 0 0 3 0 0 0

0 0 5 0 0 3 0 0 0 0

Population protocols
(DF01,AADFP’04)

  A population P is a set of agents

  Every agent has a bounded memory
independent of the size of the system

  Algorithms are uniform and anonymous

Population protocols

  The agents are asynchronous and have no
control over their mobility pattern

  A pair of agents communicate if they get close
to each other (one is the initiator)

  Every interaction that is always possible
eventually happens (fairness)

Population protocol

  Input; Output; State S
  InMap In; OutMap Out

 Transition δ

Configuration / Execution

  A configuration is a set of states of all
agents

 An execution is a sequence of configurations

Fairness

 An infinite execution E is fair if for any
transition δ(C,C’), if C appears infinitely
in E, then C’ appears infinitely in E

 A computation is a fair execution

Stability and convergence

  A configuration C is stable if for every C’
such as δ(C,C’), we have: Out(C) = Out(C’)

  An infinite execution converges if it has a
stable configuration

Back to the Penguins

  Input = {0,1}
 Output = {ALARM, OK}
 S = {0,1,2,3,4,5}
  In (identity): 0 à 0, 1 à 1

 Out:{0, 1, 2, 3, 4} à OK
 5 à ALARM

 δ: (i, j)à (i+j, 0) if i+j <5
 (5, 5) if i+j ≥5

Transition

More generally (AAD06)

 Theorem: population protocols
compute exactly first order
Presburger’s arithmetic: +, -, =, >,
or, not, and, …

 NB. Not as powerful as Peano’s
arithmetic which also include *

(1) Mobility

Overview

(2) Crashes
(3) Privacy
(4) Security

But what if?

 One of the agents fail (say by crashing at
some inappropriate time)

 An agent might crash exactly when it
reaches value 4

Original algorithm O

0 1 1 0 1 1 0 0 1

0 1 0 0 1 2 0 0 1

0 0 0 0 2 3 0 0 0

0 0 0 0 5 0 0 0 0

Reliable algorithm

 Every agent performs twice the original
algorithm: O1 and O2

 When two agent communicate, one acts
as the initiator for O1 and the other as
the initiator for O2

Reliable algorithm
0 1 1 0 1 1 0 0 1

0 1 0/2 0 1 2/0 0 0 1

0 0/1 0/2 0 2/0 3/0 0 0 0/2

0 0/0 0 5/0 0/0 0 0 0/2 0/3

0 0/0 0 5/0 0/0 0 0 0 0/5

More generally (DFGR06)
  Theorem: population protocols compute
exactly Presburger’s arithmetic with a
constant number of crashes

 

(1) Mobility

This talk

(2) Crashes
(3) Privacy
(4) Security

What about privacy?

 How can we hide the initial values from
curious agents?

  How can we compute a result while
preventing any agent from figuring out, at
any point in time, any information besides its
own input and the result of the computation?

What about privacy?

  How can we make it impossible for a curious
agent to distinguish the situation where
exactly 5 penguins have low temperature
from the situation where more do?

Original algorithm

0 1 1 1 1 1 1 0 1

How to ensure privacy?

 An agent cannot use crypto (not even
signatures because of anonymity)

 An agent can see the entire state of the
agent it is interacting with: hence no
secret keys are possible

Obfuscation

0 1 1 0 1 1 0 0 1

1

-1

1

1
-1

1

-1

More generally (DFGR07)

 Theorem: population protocols can
privately compute exactly first
order Presburger’s arithmetic

(1) Mobility

This talk

(2) Crashes
(3) Privacy
(4) Security

What if agents can be
malicious?

  What can we compute with one malicious
agent? (arbitrary transitions)

Malicious agent

0 0 0 0 0 X 0 0 0

More generally (GR07)
  Theorem: population protocols cannot
compute any non-trivial predicate with
a single malicious agent

  NB. A predicate is trivial if every agent can
determine its output based only on its input

Community protocols
(GR07)

 Every agent has:
  A bounded memory where it can execute
arithmetics (as in the original population model)

+
  A bounded set of slots to store identities and
test (only) for their equality

Community protocols
(GR07)

 Theorem: community protocols
can exactly compute every
symmetric predicate that can be
(Turing) computed in n log n
space

