
DISTRIBUTED ALGORITHMS 2015/2016

Exercise Session 7
GM and VSC

November 9, 2015

Problem 1

Show that P is the weakest failure detector for Group Membership.
Solution
In order to show that P is the weakest failure detector for Group Membership, we need to show

that:

• P can be used to implement Group Membership.

• Group Membership can be used to implement P .

The first direction stems directly from the Group Membership implementation in the class.
For the second direction, we assume that all processes run Group Membership algorithm. When-

ever a new view is installed, all processes that are freshly removed from the view are added to the
suspected set. This approach satisfies both Strong Completeness and Strong Accuracy of P , directly from
the corresponding properties of Group Membership.

Problem 2

Note: This is a continuation of Problem 3 from Exercise Session 6 (last week).
In this problem we will change the view-synchronous communication (VSC) abstraction in order to

allow joins of new processes. Answer to the following questions:

1. Are the properties of VSC (as given in the class) suitable to accommodate the joins of new pro-
cesses. Why / Why not? (done)

2. Change the properties of VSC, so that they allow for implementations that support the joins of
new processes. (Hint: focus on the properties of group membership) (done)

3. Sketch the changes we need to perform on the Consensus-based (Algorithm II) implementation
of VSC in order to support joins.

Solution 2.3

The solution is described in Algorithm 1, 2 on the last two pages of this document. The changes to the
regular algorithm are highlighted in red (note that we used the consensus algorithm that appears in the
book — it is similar in spirit to the version in the slides).

We add two new local variables to the algorithm: joined and crashed. The joined variable is a
boolean flag that is set to true after the process successfully joins a view (is part of the view members).
The joined flag differentiates the behavior of processes that are just attempting to join. The crashed
variable is a local set that keeps track of crash events received from the failure detector. This set is
useful in executions where a process p attempts to join and then crashes. If another correct process p2
sees the join attempt only after the crash notification, it needs to remember that it has already seen a
crash of p and to disregard the join.

1/4



DISTRIBUTED ALGORITHMS 2015/2016
For most events, the only difference to the original algorithm is that we impose the condition

joined = true for event handlers. Recall that such a conditional event handler means that the events are
implicitly buffered until the condition becomes true (see the document describing the language used for
module specification in “Additional Material” section on the course website). For example, the crash
handler is now conditioned by joined = true. This means that any crash event received by the process
while it is still joining will be buffered. The events will, however, be handled right after the process
successfully joins a view.

The joining begins when the application emits a Join event (line 21). If the process has not joined
yet and is not part of the initial set of processes in the view, the process broadcasts a JoinReq message
to every other process. The JoinReq message can be seen as a dual of the crash event. It will be the job
of the receiving correct processes (that are already view members) to handle the join and propose the
addition of the joining process to a view.

Upon receiving a JoinReq message (line 23), processes will add the joining process to their correct
set. Note that if the receiving process has already seen a crash of the joining process, the correct set will
not be changed ({p} \ crashed will be ∅). Changing the correct set will trigger the handler at line 37 and
initiate a view change. Processes that have seen the broadcast from the joining process will propose it
in the new view member set. Since the joining process uses best-effort broadcast, correct processes will
eventually receive the JoinReq broadcast message (if the joining process is also correct).

Another difference with the initial algorithm is that once a decision is taken in the consensus and
a process moves to a new view, every process broadcasts the new view (both its member set and id).
This broadcast is useful for joining processes. If a joining process sees that it is part of a new view, it
will initialize its view id, member set and correct set accordingly. Finally, the joining process sets the
joined flag to true (meaning that it will handle all buffered events) and emits a JoinOk indication to the
application.

2/4



DISTRIBUTED ALGORITHMS 2015/2016

Algorithm 1 View synchrony with joins, first part
1: Implements:
2: VSCJ (vscj)

3: Uses:
4: UniformConsensus (ucons)
5: BestEffortBroadcast (beb)
6: PerfectFailureDetector (P )

7: upon event 〈vscj, Init〉 do
8: (vid,M) := (0,Π)
9: correct := Π

10: flushing := false; blocked := false;wait := false;
11: pending := ∅; delivered := ∅; crashed := ∅
12: forall m do ack[m] := ∅
13: seen := [⊥]N

14: trigger 〈vscj, V iew | (vid,M)〉
15: if self ∈ Π then
16: joined := true
17: else
18: joined := false
19: end if

20: upon event 〈vscj, Broadcast | m〉 such that blocked = false∧joined = true do
21: pending := pending ∪ (self,m)
22: trigger 〈beb,Broadcast | [DATA, vid, self,m]〉

23: upon event 〈vscj,Deliver | p, [DATA, id, s,m]〉 such that joined = true do
24: if id = vid ∧ blocked = false then
25: ack[m] := ack[m] ∪ {p}
26: if (s,m) 6∈ pending then
27: pending := pending ∪ (s,m)
28: trigger 〈beb,Broadcast | [DATA, vid, s,m]〉
29: end if
30: end if

31: upon ∃(s,m) ∈ pending : M ⊆ ack[m] ∧m 6∈ delivered∧joined = true do
32: delivered := delivered ∪ {m}
33: trigger 〈vscj,Deliver | s,m〉

34: upon event 〈P,Crash | p〉 such that joined = true do
35: correct := correct \ {p}
36: crashed := crashed ∪ {p}

37: upon correct 6= M ∧ flushing = false∧joined = true do
38: flushing := true
39: trigger 〈vscj, Block〉

40: upon event 〈vscj, BlockOk〉 such that joined = true do
41: blocked := true
42: trigger 〈beb,Broadcast | [PENDING, vid, pending]〉

43: upon event 〈beb,Deliver | p, [PENDING, id, pd]〉 such that id = vid∧joined = true do
44: seen[p] := pd

45: upon ∀p ∈ correct : seen[p] 6= ⊥ ∧ wait = false do
46: wait := true
47: vid := vid + 1
48: initialize a new instance uc.vid of uniform consensus
49: trigger 〈uc.vid, Propose | (correct, seen)〉

3/4



DISTRIBUTED ALGORITHMS 2015/2016

Algorithm 2 View synchrony with joins, second part
1: upon event 〈uc.id,Decide |M ′, S〉 do
2: ∀p ∈M ′ : S[p] 6= ⊥ do
3: ∀(s,m) ∈ S[p] : m 6∈ delivered do
4: delivered := delivered ∪ {m}
5: trigger 〈vscj,Deliver | s,m〉
6: flushing := false; blocked := false;wait := false
7: pending = ∅
8: ∀m do ack[m] := ∅
9: seen := [⊥]N

10: M := M ′

11: trigger 〈vscj, V iew | (vid,M)〉
12: ∀p ∈M do
13: trigger 〈beb,Broadcast | [NewV iew, vid,M ]〉

14: upon event 〈beb,Deliver | [NewV iew, vid′,M ′]〉 such that joined = false do
15: if self ∈M ′ then
16: (vid,M) := (vid′,M ′)
17: correct := M
18: joined := true
19: trigger 〈vscj, JoinOk〉
20: end if

21: upon event 〈vscj, Join | self〉 such that joined = false do
22: trigger 〈beb,Broadcast | [JoinReq, self ]〉

23: upon event 〈beb,Deliver | [JoinReq, p]〉 such that joined = true do
24: correct := correct ∪ {p} \ crashed

4/4


