
Demystifying Bitcoin

Prof R. Guerraoui EPFL

Have you heard about?

Blockchain
Bitcoin

Ethereum

Turing Completeness NP vs P
Consensus

Proof of work
Signatures

Smart contracts

Snapshot

Perspectives
(1) The journalist

(2) The user

(3) The participant

(4) The engineer

(5) The scientist

(1) The Journalist

2008: Financial crisis – Nakamoto (1/21m)
From 1c to 10000$ through 20000$

2014: Ethereum (CH) - Now 800 $

From trading hardware to general trading

2020: Libra - FacebookCoin

Perspectives
(1) The journalist

(2) The user

(3) The participant

(4) The engineer

(5) The scientist

(2) The User

(2) The User

The wallet: 1 private key + several public keys

Transaction validation
Signing + gossiping + mining + chaining

Transaction commitment
After time t: thousands of users have seen it

(3) The Participant

(3) The Participant

(3) The Participant
To validate a transaction, a miner has to
solve a puzzle including it

Fairness and cooperation

Total: 21 millions bitcoins
Now: 17 millions

Incentive: 12 bitcoins / puzzle
50 bitcoins 3 years ago

(4) The Engineer
Joinning (a P2P network)

Gossiping (the transaction)

Mining (proof of work - nonce)
Chaining (hash)

Committing/Aborting

Gathering (a block)

Signing (a transaction)

Gossiping (the block)

The Big Picture

Special Reward TX
TX-2 (signed)

TX-2452 (signed)

•••

Prev
nonce This

#

Bitcoin block

Special Reward TX
2 (signed)

2478 (signed)

•••

nonce This
#

Special Reward TX
TX-2 (signed)

TX-2325 (signed)

•••

Prev
nonce

Mining: find such that < dnonce This
#

How? By trying different nonces (brute force)

Perspectives
(1) The journalist

(2) The user

(3) The participant

(4) The engineer

(5) The scientist

(5) The Scientist

Conjecture 1: Turing Universality

Conjecture 2: P is not NP

Theorem 1: Lamport (Consensus) Universality

Theorem 2: Consensus Impossibility

Turing Universality (36)

P vs NP (Nash/GV 50 – Ford 70)

? * ? = 91

7 * 13 = ?

Lamport Universality (78)

Every service can be implemented in a highly
available manner using Consensus

Safety: No two nodes must choose different values.
The chosen value must have been proposed by a node.

Liveness: Each node must eventually choose a value.

Consensus Universality (78)

Consensus is impossible in an
asynchronous system

Consensus Impossibility (84)

Payment System

Can we implement a payment
system asynchronously?

The infinitely big

The infinitely small

Message Passing

p1

p2

p3

Send

Receive

Shared Memory

p1

p2

Write()

Read()

1

1

ó Message Passing

Registers

Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 1

Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 1

read() - 0

Non-Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 0

read() - 1

Non-Atomic Shared Memory

p1

p2

p3

write(1) - ok

read() - 0

read() - 1

Message Passing ó Shared Memory

p1

p2

p3

Write(1) Ok

Read() 1

Quorums (asynchrony)

Message Passing ó Shared Memory

p1

p2

p3

Write(1) Ok

Read() 1

Quorums (asynchrony)

Message Passing ó Shared Memory

p1

p2

p3

Write(1) Ok

Read() 1

Quorums (asynchrony)

« Optimization is the source of all evil » D. Knuth

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

ó

P vs NP

Asynchronous vs Synchronous

? * ? = 917 * 13 = ?

p1

p2

Write(P1)

Write(P2)

Atomicity

Wait-freedom

Payment System

Can we implement a payment
system asynchronously?

Counter: Specification

A counter has two operations inc() and
read(); it maintains an integer x init to 0

read():
return(x)

inc():
x := x + 1;
return(ok)

Counter: Algorithm
The processes share an array of registers
Reg[1,..,N]
inc():

Reg[i].write(Reg[i].read() +1);
return(ok)

read():
sum := 0;
for j = 1 to N do

sum := sum + Reg[j].read();
return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

2-Consensus with Counter*

§ Registers R0 and R1 and Counter* C - initialized to 1

§ Process pI:
§ propose(vI)
§ RI.write(vI)
§ res := C.dec()
§ if(res = ok) then

ü return(vI)
ü else return(R{1-I}.read())

Impossibility [FLP85,LA87]

§ Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

§ Theorem: no asynchronous algorithm implements
consensus among two processes using registers

Sperner’s Lemma

§ Theorem: no asynchronous algorithm implements
set-agreement using registers

§ The consensus number of an object is the maximum
number of processes than can solve consensus with it

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x from a to b if a >
x (return ok; else return no)
NB. Only the owner of a invokes Pay(a,*,*)

§ Questions: can PO be implemented asynchronously?
what is the consensus number of PO?

Snapshot: Specification

A snapshot has operations update() and
scan(); it maintains an array x of size N

scan():
return(x)

update(i,v):
x[i] := v;
return(ok)

Algorithm?

The processes share one array of N registers
Reg[1,..,N]
scan():

for j = 1 to N do
x[j] := Reg[j].read();

return(x)
update(i,v):

Reg[i].write(v); return(ok)

Atomicity?

p1

p2

p3

update(1,1) - ok

scan() - [1,0,2]

update(3,2) - ok

Atomicity?

p1

p2

p3

update(1,1) - ok

scan() - [1,0,2]

update(3,2) - ok

Atomicity?

p1

p2

p3

scan() - [0,0,10]

update(2,1) - ok

update(3,10) - ok

Key idea for atomicity
To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

To update, scan then write the value and the scan

Key idea for wait-freedom

To scan, a process keeps collecting and returns a
collect if it did not change, or some collect returned
by a concurrent scan

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current
balance: if bigger than the transfer, updates and
returns ok, otherwise returns no
To read, scan and return the current balance

PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k

(5) The Scientist

Conjecture 1: Turing Universality

Conjecture 2: P is not NP

Theorem 1: Lamport (Consensus) Universality

Theorem 2: Consensus Impossibility

Theorem 3: PO < Consensus

Payment System (AT2)

AT2_S
AT2_D

AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most)

References

