Demystifying Bitcoin

Prof R. Guerraoui EPFL

¢

-

Have you heard about?

Bitcoin
Blockchain th
ereum
Signatures oroof of y
roof of wor
Smart contracts
Turing Completeness NP vs P

Consensus Snapshot

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(1) The Journalist

2008: Financial crisis — Nakamoto (1/21m)
» From 1c to 10000$ through 20000%$

“From trading hardware to general trading

2014: Ethereum (CH) - Now 800 $

2020: Libra - FacebookCoin

I TP
7260 457

| 12333
2
oce b
312) 5 O

:’ ot uvy.'.u‘!a'hv." sy

e
oy ':"ld%

a4
wie

N R OO

N

A=W

U

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(2) The User

BLOCKCHAIN A ¢ soNouT

{7} asHB0ARD BE YOUR OWN BANK® 0.00000546 BTC | ¢ 0.102338636803627092 ETH
fransactions ——— &, Send & Request 523‘08
BITCOIN

ETHER New! & SENT RECEIVED Export Private Key = Search Q
T, BUY&SELL v SENT To: 0x9970b7€233555a037311be1f3261b59393d6981f

0.0001 ETH

@10))
SECURITY CENTER (. July 21 @ 10:10 AM From: My Ethereum Wallet

o5 SETTINGS 4 Transaction Confirmed v/ Transaction Fee:

@ raQ
s SENT To: 0x16a6920db1f1 4fc473325¢f94a5e2d20¢ 1 fbag6s
July 18 @ 02:54 PM From: My Ethereum Wallet 0.0001416... ETH
> RECEIVED To: My Ethereum Wallet T
July 17 @ 11:44 AM From: 0x3b0bc51ab3dee5b7b6e34e5b960285805¢41736 0083800
% RECEIVED To: My Ethereum Wallet test. hey iamiel 2
est, ney jamie! ¢
July 13 @ 03:03 PM From: Oxeed16856d551569d134530ee3967ec79995¢2051 7] 001966193 ETH

(2) The User

' The wallet: 1 private key + several public keys

“ Transaction validation
» Signing + gossiping + mining + chaining

Transaction commitment
» After time t: thousands of users have seen it

(3) The Participant

Honey, I'm home!
| found a block today!

5 7
6 3
6
8 6 3
4 [] 1
7 2 6
278
1 5
8 7.9

+

”Miner Jack“

2

Block:

Nonce:

Data:

Hash:

(3) The Participant

2790

NCore

0000cS5f693ac7 7alBae7 JaceS5df932457fcb2e8dfa23c2f3chd8ebb125ba7843

(3) The Participant

To validate a transaction, a miner has to
solve a puzzle including it

» Fairness and cooperation

- Incentive: 12 bitcoins / puzzle
» 50 bitcoins 3 years ago

Total: 21 millions bitcoins
» Now: 17 millions

(4) The Engineer

7 Joinning (a P2P network) 9
~ Signing (a transaction)

~ Gossiping (the transaction)

~ Gathering (a block)

~ Mining (proof of work - nonce)
~ Chaining (hash)

~ Gossiping (the block)
~ Committing/Aborting

TECHNOLOGIES OF A BLOCKCHAIN

Asymmetric Hash Functions
Encryption Transaction/block hashing as well

Transaction signing as obfuscating public keys

Merkle Trees Key-Value Database

Efficient way to package

okups of previous transactions
r

(0
transactions into blocks (prevent double-spends)

PZP Communication
Protocol

Sharing transactions and blocks

Proof of Work

Method to achieve consensus

Hashing

Input Data Output Hash
Hashing Algo

@ Blockgeeks

NOT POSSIBLE

PLAINTEXT h ash N HASHED VALUE

L —

HASHING

Input Hash sum

Hash
function

Hash
function

Hash
function

The Big Picture

Bitcoin block

Special Reward TX Special Re
TX-2 (signed) TX-2 (sit

signed) TX-2452 (signed) TX-2325 (

(]
(]
(]
— e o — r

Mining: find | suchthat| | <d

How? By trying different nonces (brute force)

Block: 0 1

Nonce: 2790
Data: NGCore
Hash: 0000cS51693ac7 7alBae7 3aceSdf93245 7fcb2e8dfa23c2f3chd8ebb125ha7843

Smart Contracts

Option contract written as Contract is part of the i Parties involved in the
code into a blockchain. public blockchain. contract are anonymous.

.
... L ————
.

"
Contract executes itself Regulators use blockchain to
when the conditions are met. : keep an eye on contracts.

Happy Hustlin’ https://codebrahma.com

€ - C 0 GitHub, Inc. [US] https://githubcom [=
33 partner_1 = contract.storage[I_PARTNER_1]
34 partner_2 = contract.storage[I_PARTNER_2]
35
36 if s¥ 'S SED and tx.sender == partner_2 and tx.data[@] == partner_1:
37 contract.storage[I_STATE] = S_MARRIED
38
39 else if state == S_MARRIED and tx.sender == partner_1 or tx.sender == partner_2:
40 if tx.data[@] == TX_WITHDRAW:
41 creator = contract.storage[I_WITHDRAW_CREATOR]
42 if creator != @ and contract.storage[I_WITHDRAW_TO] == tx.data[1] and contract.storage[I_WITHDRAW_AMOUNT] == tx.d
43 mktx(tx.data[1], tx.data[2], @, @)
44 contract.storage[I_WITHDRAW_TO] = @
45 contract.storage[I_WITHDRAW_AMOUNT] = @
46 contract.storage[I_WITHDRAW_CREATOR] = @
47 else:
48 contract.storage[I_WITHDRAW_TO] = tx.data[1]
49 contract.storage[I_WITHDRAW_AMOUNT] = tx.data[2]
5@ contract.storage[I_WITHDRAW_CREATOR] = tx.sender
51
52 else if tx.data[@] == TX_DIVORCE:
53 creator = contract.storage[I_DIVORCE_CREATOR]
54 if creator != @ and creator != tx.sender:
55 balance = block.account_balance(contract.address)
56 mktx(partner_1, balance / 2, @, @)
57 mktx(partner_2, balance / 2, @, @)

SR rantrart ctaraocalT CTATE] = € NTUNRCEN

Perspectives

(1) The journalist
(2) The user
(3) The participant
(4) The engineer

(5) The scientist

(5) The Scientist

Conjecture 1: Turing Universality
Conjecture 2: P is not NP

" Theorem 1: Lamport (Consensus) Universality

" Theorem 2: Consensus Impossibility

Turing Universality (36)

Infinite Tape

1700|011]|1 |0

‘ ‘ Read / Write Head

Control Unit

7 %7

91

7*13 =7

P vs NP (Nash/GV 50 — Ford 70)

o

N Bh

Lamport Universality (78)

Basic consensus

State

Machine

X3

Y| 2

2|7
State State
Machine Machine
X3 X| 3
Y| 2 Y| 2
Z |7 Z |7

-

Safety: No two nodes must choose different values.

The chosen value must have been proposed by a node.

KLiveness: Each node must eventually choose a value.

J

Every service can be implemented in a highly

available manner using Consensus

Consensus Impossibility (84)

Consensus is impossible in an
asynchronous system

'Payment System

Can we implement a payment
system asynchronously?

The infinitely big

‘ i.m;q_mqmw—v-q -
<144 A

The infinitely small

Message Passing

Send

N

p2

p3 \ /
Receive

Shared Memory

Write() 1

N

Registers

N

Read() 1

p2

<~ Message Passing

Atomic Shared Memory

write (l) - ok

Atomic Shared Memory

write (l) - ok

Non-Atomic Shared Memory

write (l) - ok

Non-Atomic Shared Memory

write (l) - ok

Message Passing <> Shared Memory

Write(1) Ok

Quorums (asynchrony)

Message Passing <> Shared Memory

Write(1) Ok

Quorums (asynchrony)

Message Passing <> Shared Memory

Write(1) Ok

Quorums (asynchrony)

« To understand a distributed computing problem:
bring it to shared memory » T. Lannister

« Optimization is the source of all evil » D. Knuth

Pvs NP

7*13 =7 ? *2 =91
Asynchronous vs Synchronous

Write(P1)

b ~._

n2 Write(P2)/v \

'Payment System

“Atomicity

“Wait-freedom

Can we implement a payment
system asynchronously?

Counter: Specification

A counter has two operations /n¢() and
read(); it maintains an integer x /nit to 0

read().
» return(x)
nc():
X:i=X+1;
return(ok)

Counter: Algorithm

The processes share an array of registers
Reg[1,..,N]

nc():
Regl[i].write(Reg[i].read() +1);
return(ok)
read():
sum := 0;
forj=1to Ndo
sum := sum + Req[j]l.read();
return(sum)

Counter*: Specification

Counter* has, in addition, operation dec()

dec():
if x > 0 then x := x - 1; return(ok)
else return(no)

Can we implement Counter*
asynchronously?

2-Consensus with Counter*

« Registers RO and R1 and Counter* C - initialized to 1

= Process pl.:
propose(VI)
RI.write(vI)
res := C.dec()
if(res = ok) then
v return(vI)
v else return(R{1-I}.read())

Impossibility [FLP85,LA87]

« Theorem. no asynchronous algorithm implements
consensus among two processes using registers

« Corollary: no asynchronous algorithm implements
Counter* among two processes using registers

« Theorem. no asynchronous algorithm implements
set-agreement using registers

- The consensus number of an object is the maximum
number of processes than can solve consensus with it

m-r‘lza 4 5 & 7 B 9% 10 1 12 13 14 115 16 17 18
+
' [2
: & HAHRBEBE
s LR R
« BEE BREEREERE R EEEE]E]
3 [EHEEBRRBEEBERBEEBEEBRBEERE
 HEABHABHEBEBBREBREBREE
7 I - e e][]))] (e e 97 2
HERRRBEBREEAFREEEE
HHEERHE BB REEEEIEEE

Payment Object (PO): Specification

Pay(a,b,x): transfer amount x fromatobifa >
X (return ok; else return no)

NB. Only the owner of a invokes Pay(a,*,*

« Questions: can PO be implemented asynchronously?
what is the consensus number of PO?

Snapshot: Specification

A snapshot has operations update() and
scan();, it maintains an array x of size NV

scan():

» return(x)

upaate(i,v):
X[1] =V,
return(ok)

Algorithm?

" The processes share one array of N registers
Reg[1,..,N]

scan():
“forj=1toNdo
X[j] := Reg[j]l.read();
return(x)
upaate(i,v):
- Reqg[i].write(v); return(ok)

Atomicity?

update (1,1) - ok

update (3,2) - ok

——o————

Atomicity?

update (1,1) - ok

update (3,2) - ok

——o————

Atomicity?

scan () - [0,0,10]
S E—
update (2,1) - ok

p—ft——t—

update (3,10) -ok

—————— 1

Key idea for atomicity

To scan, a process keeps reading the entire snapshot
(i.e., collecting), until two arrays are the same

Key idea for wait-freedom

To update, scan then write the value and the scan

To scan, a process keeps collecting and returns a

collect if it did not change, or some collect returned
by a concurrent scan

The Payment Object: Algorithm

Every process stores the sequence of its outgoing
payments in its snapshot location

To pay, the process scans, computes its current
balance: if bigger than the transfer, updates and
returns ok, otherwise returns no

To read, scan and return the current balance

PO can be implemented
Asynchronously

Consensus number of PO is 1

Consensus number of PO(k) is k

(5) The Scientist

Conjecture 1: Turing Universality
Conjecture 2: P is not NP

Theorem 1: Lamport (Consensus) Universality
" Theorem 2: Consensus Impossibility

Theorem 3: PO < Consensus

Payment System (AT2)

AT2_S
AT2_D
AT2_R

Number of lines of code: one order of magnitude less

Latency: seconds (at most)

References

Christian Cachin ALGORITHMS

Rachid Guerraoui

r FOR CONCURRENT
SYSTEMS e

Introduction to

Reliable and
Secure Distributed
Programming

Second Edition

@ Springer

