Robust Distributed Learning

El Mahdi El Mhamdi
4th year PhD student,
Distributed Computing Laboratory, EPFL
Machine Learning is Successful

1972: Backprop (Werbos), Hinton & co on text

1989: LeNet neural networks, SVMs…

2012: ImageNet challenge

2016: Human defeat in the game of Go

2017-2019: Poker, Medical diagnosis, DeepFakes…
Machine Learning is Distributed

Machines: “16,000 computers to identify a cat” (N.Y. Times 2012)

Data: 3.9 billion internet users distributed across the globe

Models: Distributed representations (‘neural’ networks)
Machine Learning is Vulnerable

O bir doktor.
He is a doctor.

O bir hemşire.
She is a nurse.

Al experts are calling on Amazon to stop selling facial recognition to law enforcement

By Dave Gershgorn / April 3, 2019
Adversarial Machine Learning

Evasion Attacks (misleading input to trained model, Goodfellow et al. NeurIPS 2014, Madry et al. ICLR 2017, Everyone et al. 201x…)

Exploration Attacks (inferring privacy-sensitive info: differential privacy, secure aggregation…)

Poisoning Attacks (Biggio et al. ICML 2012, Stern et al. 2004, this thesis)
How ML is Distributed Today

Server

Worker_1
Data

Worker_2
Data

Worker_3
Data

Worker_4
Data
How ML is Distributed Today

Server

Worker\textsubscript{1}
Worker\textsubscript{2}
Worker\textsubscript{3}
Worker\textsubscript{4}

Data
goal, find $x^* = \text{argmin}_Q(x)$
How ML is Distributed Today

Server

\[x_t \]

Worker_1

Worker_2

Worker_3

Worker_4

Data

\[\xi_t^1 \]

\[\xi_t^2 \]

\[\xi_t^3 \]

\[\xi_t^4 \]
How ML is Distributed Today

“good” workers / “good” data:
\[E_{\xi} G(x_t, \xi) = \nabla Q(x_t) \]
How ML is Distributed Today

“good” workers, good data:
$$\mathbb{E}_\xi G(x_t, \xi) = \nabla Q(x_t)$$

update:
$$x_{t+1} = x_t - \frac{1}{n} \sum_{i=1}^{n} G(x_t, \xi^i_t)$$
“good” workers, good data:

$$\mathbb{E}_\xi G(x_t, \xi) = \nabla Q(x_t)$$

update:

$$x_{t+1} = x_t - \frac{1}{n} \sum_{i=1}^{n} G(x_t, \xi_t^i)$$
The Problem with How ML is Distributed Today

bad workers / bad data

Server

update:

\[x_{t+1} = x_t - \frac{1}{n} \sum_{i=1}^{n} G(x_t, \xi_i) \]
Inevitable failures at all levels
Inevitable failures at all levels

Server

Worker_1

Worker_2

Worker_3

Worker_4

Data

Data

Data

Data
Inevitable failures at all levels

Server

Worker_1

Worker_2

Worker_3

Worker_4

Data

Data

Data

Data
The Overkill of State Machine Replication (SMR)

![Diagram of the Overkill of State Machine Replication (SMR)]

- Server
- Worker
- Data
Only SMR on the server is acceptable

Server

Worker₁
Data

Worker₂
Data

Worker₃
Data

Worker₄
Data
Only SMR on the server is acceptable

Server

Worker\textsubscript{1}

Worker\textsubscript{2}

Worker\textsubscript{3}

Worker\textsubscript{4}

Data

Data

Data

Data
Bad data → Bad “worker”

Unit of failure = worker

any “unit” of gradient generation can be abstracted as a “worker” (e.g. a social media account)
Setting

1 server
n workers
f Byzantine

Threat model: omniscient ≠ omnipotent

Worker₁ Worker₂ Worker₃ Worker₄

Data
The Problem with How ML is Distributed Today

bad workers / bad data

Server

update:

\[x_{t+1} = x_t - \frac{1}{n} \sum_{i=1}^{n} G(x_t, \xi_t) \]
The Obvious Vulnerability of (distributed) Learning

Our adopted view:

Learning ~ Aggregating Knowledge from Data Points
Learning ~ Some sort of “statistical agreement”
data points “agree” on a model that minimises their loss
Closer problem: Byzantine approximate agreement

Proposed values => agreement on a value within some ϵ

Solution proposed by Mendes and Herlihy (STOC 2013)

However: incompatible with ML requirements:

- $\mathcal{O}(n^d)$ to compute a safe area

- requires $n = \Omega(f \cdot d)$ workers

"we think of d as a constant, and note that $d \leq 3$ in many practical applications."

→ true for mobile agents agreeing on a meeting point (problem in mind of the authors in Mendes and Herlihy), not true for modern ML (d can reach up to 10^{10} and typically $d > n$ not the other way)
The (solution to) the Obvious Vulnerability of (distributed) Learning

*Stay in the “*correct cone*”!*

(i.e in the half space decreasing the cost function: the half-space requirement of Bottou 1998)
The (solution to) the Obvious Vulnerability of (distributed) Learning

Stay in the “correct cone” → [(α, f)-Byzantine Resilience]:

Let V_1, \ldots, V_n be any i.i.d random vectors in \mathbb{R}^d, $V_i \sim G$, with $\mathbb{E} G = g$.

B_1, \ldots, B_f any random vectors in \mathbb{R}^d, (possibly dependent on the V_i's).

Gradient Aggregation Rule F is said to be (α, f)-Byzantine resilient if, for any $1 \leq j_1 < \ldots < j_f \leq n$, the vector $F = F(V_1, \ldots, \underbrace{B_1, \ldots, B_f}_{j_1}, \ldots, V_n)$ satisfies

\[
\langle \mathbb{E} F, g \rangle \geq (1 - \sin \alpha) \cdot \|g\|^2 > 0 \text{ and }
\]

(i) \(\langle \mathbb{E} F, g \rangle \geq (1 - \sin \alpha) \cdot \|g\|^2 > 0 \) and

(ii) for $r = 2, 3, 4$, \(\mathbb{E} \| F \|^r \)

\[
\mathbb{E} \| G \|^r_1 \ldots \mathbb{E} \| G \|^r_{n-1}
\]

is bounded above by a linear combination of terms with $r_1 + \ldots + r_{n-1} = r$.

\[g\]
\[r\]
Krum! (NeurIPS 2017)

\[
(m) \arg \min_{i \in \{1, \ldots, n\}, i \to j} \sum \left\| G_i - G_j \right\|^2
\]

\(i \to j \) stands for “\(G_j \) is among the \(n - f - 2 \) closest vectors to \(G_i \)” as long as \(2f + 2 < n \) and \(r = \eta(n, f) \sqrt{d} \cdot \sigma < \| g \|, \)

then Krum is \((\alpha, f)\)-Byzantine resilient where \(0 \leq \alpha < \pi/2 \) is defined by

\[
\sin \alpha = \frac{\eta(n, f) \cdot \sqrt{d} \cdot \sigma}{\| g \|} \quad \text{and} \quad \eta(n, f) = \mathcal{O}(n \text{ or } \sqrt{n})
\]

many other groups provided related solutions/improvements since then: Yin et al. ICML 2018, Chen et al. Sigmetrics 2018, Draco etc.
The Hidden Vulnerability of (distributed) Learning

The correct cone is ok, but poses a few problems in very high dimension (due to the condition $\eta(n, f)\sqrt{d} \cdot \sigma < \|g\|$)

- In very high dimension, a cone is (extremely) wide!
- Things get worse with highly non convex loss functions
The correct cone is ok, but poses a few problems in very high dimension (\sqrt{d} dependance)

- In very high dimension, a cone is (extremely) wide!
- Things get worse with highly non convex loss functions

Attack as simple as linear regression on correct gradients (breaks the median also, pink vector is in the cone)
The correct cone is ok, but poses a few problems in very high dimension (hinted by Krum: \sqrt{d} dependance

- In very high dimension, a cone is (extremely) wide!
- Things get worse with highly non-convex loss functions

Attack as simple as linear regression on correct gradients (breaks the median also)
The (solution to the) **Hidden** Vulnerability of (distributed) Learning

Bulyan:

1) *Take any Byzantine aggregation rule in the “geometric median” family (e.g. Krum)*

2) *Iterate it 2f times to produce a “soup” of vectors in the correct cone* (at iteration 2f, you still have “n”= n-2f > 2f , Bulyan requires n>4f)

3) *Looks at the component-wise medians of that soup, produce an artificial vector with it*

4) *The attacker’s leeway has been divided by \sqrt{d}!*
remarks

1) If f is way smaller than $n/4 \rightarrow$ more workers involved per epoch \rightarrow less variance

2) Higher batch-size \rightarrow less variance \rightarrow more robustness (narrower correct cone)
aSynchronous SGD

- Real time recommendations
- Stale workers (Federated learning, on-device ML, low bandwidth in some areas)
Asynchrony is (extremely) hard in distributed computing

Agreement is impossible in asynchrony with one single crashed worker (not even Byzantine).

Fischer Lynch Paterson (1983)
Asynchrony is (extremely) hard in distributed computing

Good news:

We know what we should agree on (the gradient of a cost function)

→ we can exploit its mathematical regularities
Setting (asynchrony)

- **n**: workers
- **f**: Byzantine

Threat model: omniscient ≠ omnipotent

Does not wait (no aggregation)

Worker

Worker 1 Worker 2 Worker 3 Worker 4

Data
What changed from Synchronous Settings?

Synchronous

Asynchronous
Bad news: a new impossibility result

Theorem (informal): no Asynchronous SGD algorithm tolerates a single Byzantine worker, if both infinite participation and unbounded delays are allowed.
What changed from Synchronous Settings?

Good news:

Theorem: (a minimalistic relaxation is) unbounded delays with finite successive participation via a filtering scheme

(result is relevant to asynchrony beyond Byzantine faults)
Remember “The (solution to) the Obvious Vulnerability of (distributed) Learning”?

Stay in the “correct cone”!

(i.e in the half space decreasing the cost function)

The correct cone idea will be crucial (again), but without synchronous aggregation!
Solution: Kardam

1) Kardam relies on an online filtering scheme (no aggregation or waiting):

workers are judged by

(a) their gradients’ “empirical Lipschitzness”, i.e. the growth rate of their gradient relative to their model change,

(b) their “talkativeness”

2) Kardam uses a dampening scheme on stale-gradients, (practicality: scale down correct but stale gradients)
Kardam: the filtering scheme (Lipschitz)

1) Worker \(p \) sends gradient and declares \(K_p \), its empirical gradient rate of growth \(K_p \) (declared by worker, considered by server to estimate quantiles):

\[
\hat{K}_t^p = \frac{\|g_p - g_{p \text{ prev}}\|}{\|x_t - x_{t \text{ prev}}\|}
\]

(considered by server to filter)

2) Server does not trust the worker and assigns \(\hat{K}_t^p \) to worker \(p \), where

\[
\hat{K}_t^p = \frac{\|g_p - g_q\|}{\|x_t - x_{t - 1}\|}
\]

3) \(K_p \) are still useful (since a majority will not cheating) to evaluate the quantiles of declared \(K_p \).

4) Workers whose \(\hat{K}_t^p \) falls into the n-f/n quantile are trusted, others are ignored (potential loss of work).
Kardam: Byzantine resilience

Passing the filter guarantees:

\[\langle \mathbb{E}_\xi G(x; \xi), \nabla Q(x) \rangle > \Omega \left(\left(\| \nabla Q(x_t) \| - \sqrt{d} \sigma \right) \| \nabla Q(x_t) \| \right) \]

As long as gradient estimators make sense, i.e

- As long as gradients are large
- As long as variance is small (batch-size is high enough)

Kardam makes provable progress (cone is smaller than \(\pi/2 \))
remarks

- Computing the **empirical** growth rate of gradients, is still a very naive way of estimating the curvature

- Frequency filter probably still too restrictive (no optimality was proven on number of participations)
Summary

This presentation:

- Formulating the Byzantine SGD question
- Initial solution in the synchronous case

NeurIPS 2017a

- Strengthening synchronous solutions for high dimension / non convexity

ICML 2018a

- Initial (and so far only) solution to the asynchronous case

ICML 2018b

Remaining challenges:

A better understanding of the optimisation tool-box,
Leverage recent results in neural nets theory to reduce model-dependant / data-dependent unknowns,
Server-side, decentralised SGD without SMR…
Summary

This presentation:
- Formulating the Byzantine SGD question
- Initial solution in the synchronous case NeurIPS 2017a
- Strengthening synchronous solutions for high dimension / non convexity ICML 2018a
- Initial (and so far only) solution to the asynchronous case ICML 2018b

During this PhD:
- Robustness of Neural Networks as Distributed System IPDPS 2017, SRDS 2017
- Robustness in Systems Biology BDA 2017, Biorxiv 487348
- Gathering behaviours with reinforcement learning Bulletin of the EATCS 2019
- Testing the Byzantine SGD algorithms on a systems level SysML 2019

Ongoing:
- Byzantine servers without SMR
- More on the robustness of Neural Nets
- Asynchrony and curvature…
is a little really enough?

- Gradient norm is small close to convergence (early stopping is enough)
- \((\text{average} + 1.5\sigma)_{\text{coordinate-wise}}\) proposed \(f\) times
- We tested it: Bulyan never prevented from convergence, same accuracy as without the proposed attack
- out of topic: black box (choose a loss, propose a gradient from it)

![Graph 1](image1.png)

![Graph 2](image2.png)

Figure 2: Model accuracy on MNIST. \(m = 24\%\) and \(z = 1.5\). No Attack is plotted for reference.

(a little is enough) Bulyan (our attack) for comparison
server-side

- Ongoing work with (1) SR and (2) AG
 - 1: \(n \) workers (Byzantine) and \(N \) servers (Byzantine) on asynchronous network problem is drift of honest parameters, tackled with an anti-drift mechanism (a median on \(N - F \) parameters that a received at a server).
 - Issue: still strong hypothesis on alignment of parameters on correct workers
 - but: verified empirically (but no reason it applies to all models and all datasets)
 - 2: Kardam-like filter on models, synchronous training, Krum on workers, norm growth filter instead of growth rate filter
- Hypothesis hide a few model/data-dependent variables
- need to go down to more convex settings for exact hypothesis (ours are indicative (e.g. how much exactly the batch-size))
Kardam: the filtering scheme (frequency)

Specification:

The frequency filter ensures that any sequence of length $\sim 2f$ consequently accepted gradients contains at least $\sim f$ gradients computed by honest workers.

How:

L: list of ids of the workers that contributed the last $2f$ gradients, accept p (if passed the Lipschitz filter) as long as

$$\sum_{p \in \theta} n_p \leq f$$

(we can do better)
Kardam: the staleness-aware component

Update takes “declared” staleness of the worker into account and scales it down with $\Lambda(\tau_{tl})$

$$x_{t+1} = x_t - \gamma_t K\text{ar}_t$$
$$= x_t - \gamma_t \sum_{[G(x_l; \xi_m, l) \in G_t]} \Lambda(\tau_{tl}) \cdot G(x_l; \xi_m)$$

$|G_t| = M$

With M=1 in “pure” asynchrony (one gradient per update)

Generic SAware scheme, interesting in its own right - makes Kardam work practically, outperforms alternatives (that are actually subcases of it)
Kardam: the staleness-aware scheme

Update takes “declared” staleness of the worker into account and scales it down with an adaptive learning rate.

\[
x_{t+1} = x_t - \gamma_t K a r_t
\]

\[
= x_t - \gamma_t \sum_{[G(x_l; \xi_m), l] \in G_t} \Lambda(\tau_{tl}) \cdot G(x_l; \xi_m)
\]

\[
\gamma_t = \sqrt{\frac{Q(x_1) - Q(x^*)}{K T M d \sigma^2}} \cdot \frac{M}{\sum_{\lambda \in \Lambda_t} \lambda |G_t|_{\mu_t}}
\]

Adaptive learning rate.
\(\gamma\): baseline learning rate
\(\mu_t\): incorporate total staleness at epoch \(t\)
Replacing unbiasedness by our correct cone alternative, the ergodic (Zhang et al. 2015, Jiang et al. 2017) convergence proof guarantees that:

\[
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \| \nabla Q(x_t) \|^2 \leq (2 + \mu_{\text{max}} + \gamma K M \chi \mu_{\text{max}}) \cdot \gamma K \cdot d \sigma^2 + d \cdot \sigma^2 + 2 D K \sigma \sqrt{d} + K^2 D^2
\]

D: the global confinement of the cost function
K: the global lipschitz bound
And parameters of the adaptive learning rate (details in the paper)
Experiments

Same remark as first talk: no Byzantine resilience is proven with experiments, only vulnerability can be proven with an attack.

However... Kardam has some merits *besides* Byzantine resilience since “pure” asynchrony ~ Byzantine (+ knowledge of f → less lost gradients)

![Graphs showing dampening functions, cost, and accuracy](image)