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Machine Learning is Successful

1972: Backprop (Werbos), Hinton & co on text 
 
1989: LeNet neural networks, SVMs… 
 
2012: ImageNet challenge 

2016: Human defeat in the game of Go 

2017-2019: Poker, Medical diagnosis, DeepFakes…
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Machine Learning is Distributed

Machines: “16,000 computers to identify a cat” (N.Y. Times 2012) 

Data: 3.9 billion internet users distributed across the globe 

Models: Distributed representations (‘neural’ networks)
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Machine Learning is Vulnerable
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Adversarial Machine Learning

Evasion Attacks (misleading input to trained model, Goodfellow et al. 
NeurIPS 2014, Madry et al. ICLR 2017, Everyone et al. 201x…) 

Exploration Attacks (inferring privacy-sensitive info: differential privacy, 
secure aggregation…) 

Poisoning Attacks (Biggio et al. ICML 2012, Stern et al. 2004, this thesis)
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How ML is Distributed Today
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How ML is Distributed Today

goal, find x* = argminQ(x)
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How ML is Distributed Today
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How ML is Distributed Today

“good” workers / “good” data: 
𝔼ξG(xt, ξ) = ∇Q(xt)
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How ML is Distributed Today

“good" workers, good data: 
𝔼ξG(xt, ξ) = ∇Q(xt)
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How ML is Distributed Today

“good" workers, good data: 
𝔼ξG(xt, ξ) = ∇Q(xt)
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The Problem with How ML is Distributed Today

bad workers / bad data 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Inevitable failures at all levels
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Inevitable failures at all levels
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Inevitable failures at all levels
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The Overkill of State Machine Replication (SMR)
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Only SMR on the server is acceptable
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Only SMR on the server is acceptable
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Bad data → Bad “worker”

Unit of failure = worker

20

Worker1 Worker2 Worker3 Worker4

Server

Data Data Data Data

any “unit” of gradient generation can be abstracted as a “worker” (e.g. a social media account)



Setting

1 server 
n  workers 
f  Byzantine  
 
Threat model: omniscient ≠ omnipotent
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The Problem with How ML is Distributed Today

bad workers / bad data 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The Obvious Vulnerability of (distributed) Learning

Our adopted view: 

Learning ~ Aggregating Knowledge from Data Points  
Learning ~ Some sort of “statistical agreement”  

 data points “agree” on a model that minimises their loss
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Closer problem: Byzantine approximate agreement

Proposed values => agreement on a value within some  

Solution proposed by Mendes and Herlihy (STOC 2013) 

However:  incompatible with ML requirements: 

-  to compute a safe area  

- requires  workers 

"we  think  of  as  a constant,  and  note  that  in  many  practical  
applications." 

→ true for mobile agents agreeing on a meeting point (problem in mind of the authors 
in Mendes and Herlihy? ), not true for modern ML (  can reach up to  and 
typically  not the other way )

ϵ

𝒪(nd)

n = Ω( f . d)

d d ≤ 3

d 1010

d > n
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Stay in the “correct cone” ! 

(i.e in the half space decreasing  
the cost function: the  
half-space requirement of  
Bottou 1998) 
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The (solution to) the Obvious Vulnerability of (distributed) Learning



Stay in the “correct cone” → [ -Byzantine Resilience]: 

 Let  be any i.i.d random vectors in , , with . 

  any random vectors in , (possibly dependent on the 's). 

 Gradient Aggregation Rule  is said to be -Byzantine resilient if, for any 
, the vector  satisfies 

(i)  and 

(ii) for ,     is bounded above by a linear combination of terms 

 

    with .

(α, f )

V1, …, Vn ℝd Vi ∼ G 𝔼G = g

B1, …, Bf ℝd Vi

F (α, f )
1 ≤ j1 < … < jf ≤ n F = F(V1, …, B1⏟

j1

, …, Bf
⏟

jf

, …, Vn)

⟨𝔼F, g⟩ ≥ (1 − sin α) ⋅ ∥g∥2 > 0

r = 2,3,4 𝔼 F
r

𝔼 G
r1…𝔼 G

rn−1

r1 + … + rn−1 = r
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The (solution to) the Obvious Vulnerability of (distributed) Learning

Krum !  (NeurIPS 2017) 
 

 : stands for “  is among the  closest vectors to ” as 

long as   and ,  
 
then Krum is -Byzantine resilient where  is defined by                

     and     

i → j Gj n − f − 2 Gi

2f + 2 < n r = η(n, f ) d ⋅ σ < ∥g∥

(α, f ) 0 ≤ α < π/2

sin α =
η(n, f ) ⋅ d ⋅ σ

∥g∥
η(n, f ) = 𝒪(n or n)
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many other groups provided related solutions/improvements since 
then: Yin et al. ICML 2018, Chen et al. Sigmetrics 2018, Draco etc.



The Hidden Vulnerability of (distributed) Learning

The correct cone is ok, but poses a few problems in very high 

dimension (due to the condition )  

- In very high dimension, 
a cone is (extremely) wide ! 

- things  get worse with highly 
non convex loss functions

η(n, f ) d ⋅ σ < ∥g∥
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The correct cone is ok, but poses a few problems in very high dimension (  
dependance) 

- In very high dimension, 
a cone is (extremely) wide ! 

- things  get worse with highly 
non convex loss functions 

Attack as simple as linear regression on 
correct gradients  
(breaks the median also, pink vector is 
In the cone)

d

29

The Hidden Vulnerability of (distributed) Learning



The correct cone is ok, but poses a few problems in very high dimension (hinted 

by Krum:  dependance  

- In very high dimension, 
a cone is (extremely) wide ! 

- things  get worse with highly 
non convex loss functions 

Attack as simple as linear regression on 
correct gradients  
(breaks the median also)

d
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Attack on CIFAR-10 with a CNN 

The Hidden Vulnerability of (distributed) Learning



1) Take any Byzantine aggregation rule in the “geometric 
median” family (e.g. Krum) 

2) Iterate it 2f times to produce a “soup” of vectors in the 
correct cone (at iteration 2f, you still have “n”= n-2f > 2f , Bulyan requires n>4f) 

3) Looks at the component-wise medians of that soup, 
produce an artificial vector with it 

4) The attacker’s leeway has been divided by  !d 31

The (solution to the) Hidden Vulnerability of (distributed) Learning

Bulyan:



remarks

1) If f is way smaller than n/4 → more workers involved per 
epoch → less variance  
 

2) Higher batch-size→  less variance → more robustness 
(narrower correct cone)
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aSynchronous SGD

- Real time recommendations 
- Stale workers (Federated learning, on-device ML , low 

band-with in some areas)
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Asynchrony is (extremely) hard in distributed computing

Agreement is impossible in asynchrony with 
one single crashed worker (not even 
Byzantine). 
       
Fischer Lynch Paterson (1983) 
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Asynchrony is (extremely) hard in distributed computing

Good news: 

We know what we should agree on (the 
gradient of a cost function) 

→ we can exploit its mathematical 
regularities 
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Setting (asynchrony)

n :  workers 
f : Byzantine  
 
Threat model: omniscient ≠ omnipotent
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What changed from Synchronous Settings ?

Synchronous Asynchronous
37



What changed from Synchronous Settings ?

Bad news: a new impossibility 
result 

Theorem (informal): no 
Asynchronous SGD algorithm 
tolerates a single Byzantine 
worker, if both infinite 
participation and unbounded 
delays are allowed. 38



What changed from Synchronous Settings ?

Good news: 

Theorem: (a minimalistic 
relaxation is) unbounded 
delays with finite successive 
participation via a filtering 
scheme 

(result is relevant to asynchrony 
beyond Byzantine faults) 
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Remember “The (solution to) the Obvious Vulnerability of (distributed) Learning” ?

Stay in the “correct cone” ! 

(i.e in the half space decreasing  
the cost function) 

The correct cone idea will be crucial (again),  
but without synchronous aggregation !
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Solution: Kardam

1) Kardam relies on an online filtering scheme (no aggregation or waiting): 

workers are judged by  
 
(a)  their gradients’ “empirical Lipschitzness”, i.e. the growth rate of their gradient 
relative to their model change, 
 
(b) their “talkativeness” 

2) Kardam uses a dampening scheme on stale-gradients, 
(practicality: scale down correct but stale gradients)
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Kardam: the filtering scheme (Lipschitz)

1) Worker p sends gradient and declares Kp, its empirical gradient rate of growth 
  
Kp (declared by worker, considered by server to estimate quantiles):   

2) Server does not trust the worker and assigns          to worker p, where 
 
        
 (considered by server to filter) 

3) Kp are still useful (since a majority will not cheating) to evaluate the quantiles 
of declared Kp. 
 

4) Workers whose    falls into the n-f/n quantile are trusted, others 
are ignored (potential loss of work).
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Kardam: Byzantine resilience 

Passing the filter guarantees: 

As long as gradient estimators make sense, i.e  

- As long as gradients are large 
- As long as variance is small (batch-size is high enough) 

Kardam makes provable progress (cone is smaller than π/2) 
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remarks

- Computing the empirical growth rate of gradients, is still a 
very naive way of estimating the curvature 

- Frequency filter probably still too restrictive (no optimality 
was proven on number of participations)   
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Summary
This presentation:  

- Formulating the Byzantine SGD question 
- Initial solution in the synchronous case                                                          
 
NeurIPS 2017a 

- Strengthening synchronous solutions for high dimension / non convexity         
 
ICML 2018a  

- Initial (and so far only) solution to the asynchronous case                                
 
ICML 2018b 

Remaining challenges:  

A better understanding of the optimisation tool-box,  
Leverage recent results in neural nets theory to reduce model-dependant / data-
dependent unknowns,  
Server-side, decentralised SGD without SMR…
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Summary
This presentation:  

- Formulating the Byzantine SGD question 
- Initial solution in the synchronous case                                                         NeurIPS 2017a  

- Strengthening synchronous solutions for high dimension / non convexity        ICML 2018a 

- Initial (and so far only) solution to the asynchronous case                               ICML 2018b 

During this PhD: 

- Robustness of Neural Networks as Distributed System                 IPDPS 2017, SRDS 2017 
- Robustness in Systems Biology                                                    BDA 2017, Biorxiv 487348 
- Gathering behaviours with reinforcement learning                       Bulletin of the EATCS 2019 
- Testing the Byzantine SGD algorithms on a systems level                                  SysML 2019 
- Safety in reinforcement learning                                        NeurIPS 2017b, arXiv:1805.11447 

Ongoing: 

- Byzantine servers without SMR 
- More on the robustness of Neural Nets 
- Asynchrony and curvature…
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is a little really enough?
- Gradient norm is small close to convergence (early stopping is enough) 
-  proposed  times 
- We tested it: Bulyan never prevented from convergence, same accuracy as 

without the proposed attack 
- out of topic: black box (choose a loss, propose a gradient from it)

(average + 1.5σ)coordinate−wise f
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(a little is enough) Bulyan (our attack) for comparison



server-side
- Ongoing work with (1) SR and (2) AG 

- 1:  workers (   Byzantine) and  servers (  Byzantine) on asynchronous 
network  problem is drift of honest parameters, tackled with an anti-drift 
mechanism (a median on  parameters that a received at a server).  
- Issue: still strong hypothesis on alignment of parameters on correct 

workers 
- but: verified empirically (but no reason it applies to all models and all 

datasets) 
- 2: Kardam-like filter on models, synchronous training, Krum on workers, norm 

growth filter instead of growth rate filter

n f N F

N − F
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convex, model-dependence, etc

- Hypothesis hide a few model/data-dependent variables 
- need to go down to more convex settings for exact hypothesis (ours are indicative 

(e.g. how much exactly the batch-size) )
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Kardam: the filtering scheme (frequency)

Specification: 

The frequency filter ensures that any sequence of length ~ 2f  consequently 
accepted gradients contains at least  ~ f gradients computed by honest 
workers. 

How: 

L: list of ids of the workers that contributed the last 2f gradients,  
accept p (if passed the Lipschitz filter) as long as     

(we can do better) 50



Kardam: the staleness-aware component 

Update takes “declared” staleness of the worker into account and scales it down 
with  

With M=1 in “pure” asynchrony (one gradient per update)  

Generic SAware scheme, interesting in its own right - makes Kardam work 
practically, outperforms alternatives (that are actually subcases of it) 
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Kardam: the staleness-aware scheme 

Update takes “declared” staleness of the worker into account and scales it down 
with  

         
Adaptive learning rate. 

Ɣ: baseline learning rate 
µt: incorporate total staleness at epoch t 
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Kardam: convergence guarantee 

Replacing unbiasedness by our correct cone alternative, the ergodic (Zhang et al. 2015, Jiang et 

al. 2017) convergence proof guarantees that: 

D: the global confinement of the cost function 
K: the global lipschitz bound 
And parameters of the adaptive learning rate (details in the paper) 53



Experiments

Same remark as first talk: no Byzantine resilience is proven with 
experiments, only vulnerability can be proven with an attack 

However… Kardam has some merits besides Byzantine resilience since “pure” 
asynchrony ~ Byzantine 
(+ knowledge of f→ less lost gradients) 
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