
Robust Distributed Learning

El Mahdi El Mhamdi

4th year PhD student,
Distributed Computing Laboratory, EPFL

Machine Learning is Successful

1972: Backprop (Werbos), Hinton & co on text 
 
1989: LeNet neural networks, SVMs…
 
2012: ImageNet challenge

2016: Human defeat in the game of Go

2017-2019: Poker, Medical diagnosis, DeepFakes…

2

Machine Learning is Distributed

Machines: “16,000 computers to identify a cat” (N.Y. Times 2012)

Data: 3.9 billion internet users distributed across the globe

Models: Distributed representations (‘neural’ networks)

3

Machine Learning is Vulnerable

4

Adversarial Machine Learning

Evasion Attacks (misleading input to trained model, Goodfellow et al.
NeurIPS 2014, Madry et al. ICLR 2017, Everyone et al. 201x…)

Exploration Attacks (inferring privacy-sensitive info: differential privacy,
secure aggregation…)

Poisoning Attacks (Biggio et al. ICML 2012, Stern et al. 2004, this thesis)
5

How ML is Distributed Today

6

Worker1 Worker2 Worker3 Worker4

Data

Server

Data Data Data

How ML is Distributed Today

7

Worker1 Worker2 Worker3 Worker4

Data

Server

How ML is Distributed Today

goal, find x* = argminQ(x)

8

Worker1 Worker2 Worker3 Worker4

Data

Server
xt

xt xt xt xt

How ML is Distributed Today

9

Worker1 Worker2 Worker3 Worker4

Data

Server
xt

ξ1
t ξ2

t ξ3
t ξ4

t

How ML is Distributed Today

“good” workers / “good” data: 
𝔼ξG(xt, ξ) = ∇Q(xt)

10

Worker1 Worker2 Worker3 Worker4

Data

Server
xt

ξ1
t ξ2

t ξ3
t ξ4

t

G(xt, ξ1
t) G(xt, ξ2

t) G(xt, ξ3
t) G(xt, ξ4

t)

How ML is Distributed Today

“good" workers, good data: 
𝔼ξG(xt, ξ) = ∇Q(xt)

11

Worker1 Worker2 Worker3 Worker4

Data

Server
xt

ξ1
t ξ2

t ξ3
t ξ4

t

G(xt, ξ1
t) G(xt, ξ2

t) G(xt, ξ3
t) G(xt, ξ4

t)

update:
xt+1 = xt −

1
n

n

∑
i=1

G(xt, ξi
t)

How ML is Distributed Today

“good" workers, good data: 
𝔼ξG(xt, ξ) = ∇Q(xt)

12

Server
xt

update:
xt+1 = xt −

1
n

n

∑
i=1

G(xt, ξi
t)

The Problem with How ML is Distributed Today

bad workers / bad data 

13

Server
xt

update:
xt+1 = xt −

1
n

n

∑
i=1

G(xt, ξi
t)

Inevitable failures at all levels

14

Worker1 Worker2 Worker3 Worker4

Data

Server

Inevitable failures at all levels

15

Worker1 Worker2 Worker3 Worker4

Server

Data Data Data Data

Inevitable failures at all levels

16

Worker1 Worker2 Worker3 Worker4

Server

Data Data Data Data

The Overkill of State Machine Replication (SMR)

17

Worker1 Worker2 Worker3 Worker4

Server

Data Data Data Data

Data Data Data Data Data Data Data Data

Worker1 Worker1 Worker2 Worker2 Worker3 Worker3 Worker4 Worker4

Server Server

Only SMR on the server is acceptable

18

Worker1 Worker2 Worker3 Worker4

Server

Data Data Data Data

Server Server

Only SMR on the server is acceptable

19

Worker1 Worker2 Worker3 Worker4

Server

Data Data Data Data

Bad data → Bad “worker”

Unit of failure = worker

20

Worker1 Worker2 Worker3 Worker4

Server

Data Data Data Data

any “unit” of gradient generation can be abstracted as a “worker” (e.g. a social media account)

Setting

1 server 
n workers 
f Byzantine  
 
Threat model: omniscient ≠ omnipotent

21

Worker1 Worker2 Worker3 Worker4

Data

Server

The Problem with How ML is Distributed Today

bad workers / bad data 

22

Server
xt

update:
xt+1 = xt −

1
n

n

∑
i=1

G(xt, ξi
t)

The Obvious Vulnerability of (distributed) Learning

Our adopted view:

Learning ~ Aggregating Knowledge from Data Points  
Learning ~ Some sort of “statistical agreement”  

 data points “agree” on a model that minimises their loss

23

Closer problem: Byzantine approximate agreement

Proposed values => agreement on a value within some

Solution proposed by Mendes and Herlihy (STOC 2013)

However: incompatible with ML requirements:

- to compute a safe area

- requires workers

"we think of as a constant, and note that in many practical
applications."

→ true for mobile agents agreeing on a meeting point (problem in mind of the authors
in Mendes and Herlihy?), not true for modern ML (can reach up to and
typically not the other way)

ϵ

𝒪(nd)

n = Ω(f . d)

d d ≤ 3

d 1010

d > n

24

Stay in the “correct cone” !

(i.e in the half space decreasing  
the cost function: the  
half-space requirement of  
Bottou 1998)

25

The (solution to) the Obvious Vulnerability of (distributed) Learning

Stay in the “correct cone” → [-Byzantine Resilience]:

 Let be any i.i.d random vectors in , , with .

 any random vectors in , (possibly dependent on the 's).

 Gradient Aggregation Rule is said to be -Byzantine resilient if, for any
, the vector satisfies

(i) and

(ii) for , is bounded above by a linear combination of terms

 with .

(α, f)

V1, …, Vn ℝd Vi ∼ G 𝔼G = g

B1, …, Bf ℝd Vi

F (α, f)
1 ≤ j1 < … < jf ≤ n F = F(V1, …, B1⏟

j1

, …, Bf
⏟

jf

, …, Vn)

⟨𝔼F, g⟩ ≥ (1 − sin α) ⋅ ∥g∥2 > 0

r = 2,3,4 𝔼 F
r

𝔼 G
r1…𝔼 G

rn−1

r1 + … + rn−1 = r
26

The (solution to) the Obvious Vulnerability of (distributed) Learning

The (solution to) the Obvious Vulnerability of (distributed) Learning

Krum ! (NeurIPS 2017) 
 

 : stands for “ is among the closest vectors to ” as

long as and ,  
 
then Krum is -Byzantine resilient where is defined by

 and

i → j Gj n − f − 2 Gi

2f + 2 < n r = η(n, f) d ⋅ σ < ∥g∥

(α, f) 0 ≤ α < π/2

sin α =
η(n, f) ⋅ d ⋅ σ

∥g∥
η(n, f) = 𝒪(n or n)

27

many other groups provided related solutions/improvements since
then: Yin et al. ICML 2018, Chen et al. Sigmetrics 2018, Draco etc.

The Hidden Vulnerability of (distributed) Learning

The correct cone is ok, but poses a few problems in very high

dimension (due to the condition)

- In very high dimension, 
a cone is (extremely) wide !

- things get worse with highly 
non convex loss functions

η(n, f) d ⋅ σ < ∥g∥

28

The correct cone is ok, but poses a few problems in very high dimension (
dependance)

- In very high dimension, 
a cone is (extremely) wide !

- things get worse with highly 
non convex loss functions

Attack as simple as linear regression on 
correct gradients  
(breaks the median also, pink vector is 
In the cone)

d

29

The Hidden Vulnerability of (distributed) Learning

The correct cone is ok, but poses a few problems in very high dimension (hinted

by Krum: dependance

- In very high dimension, 
a cone is (extremely) wide !

- things get worse with highly 
non convex loss functions

Attack as simple as linear regression on 
correct gradients  
(breaks the median also)

d

30

Attack on CIFAR-10 with a CNN 

The Hidden Vulnerability of (distributed) Learning

1) Take any Byzantine aggregation rule in the “geometric
median” family (e.g. Krum) 

2) Iterate it 2f times to produce a “soup” of vectors in the
correct cone (at iteration 2f, you still have “n”= n-2f > 2f , Bulyan requires n>4f) 

3) Looks at the component-wise medians of that soup,
produce an artificial vector with it 

4) The attacker’s leeway has been divided by !d 31

The (solution to the) Hidden Vulnerability of (distributed) Learning

Bulyan:

remarks

1) If f is way smaller than n/4 → more workers involved per
epoch → less variance  
 

2) Higher batch-size→ less variance → more robustness
(narrower correct cone)

32

aSynchronous SGD

- Real time recommendations
- Stale workers (Federated learning, on-device ML , low

band-with in some areas)

33

Asynchrony is (extremely) hard in distributed computing

Agreement is impossible in asynchrony with
one single crashed worker (not even
Byzantine).

Fischer Lynch Paterson (1983)

34

Asynchrony is (extremely) hard in distributed computing

Good news:

We know what we should agree on (the
gradient of a cost function)

→ we can exploit its mathematical
regularities

35

Setting (asynchrony)

n : workers 
f : Byzantine  
 
Threat model: omniscient ≠ omnipotent

36

Worker1 Worker2 Worker3 Worker4

Data

Server
Does not wait (no aggregation)

What changed from Synchronous Settings ?

Synchronous Asynchronous
37

What changed from Synchronous Settings ?

Bad news: a new impossibility
result

Theorem (informal): no
Asynchronous SGD algorithm
tolerates a single Byzantine
worker, if both infinite
participation and unbounded
delays are allowed. 38

What changed from Synchronous Settings ?

Good news:

Theorem: (a minimalistic
relaxation is) unbounded
delays with finite successive
participation via a filtering
scheme

(result is relevant to asynchrony
beyond Byzantine faults)

39

Remember “The (solution to) the Obvious Vulnerability of (distributed) Learning” ?

Stay in the “correct cone” !

(i.e in the half space decreasing  
the cost function)

The correct cone idea will be crucial (again),  
but without synchronous aggregation !

40

Solution: Kardam

1) Kardam relies on an online filtering scheme (no aggregation or waiting): 

workers are judged by  
 
(a) their gradients’ “empirical Lipschitzness”, i.e. the growth rate of their gradient
relative to their model change, 
 
(b) their “talkativeness”

2) Kardam uses a dampening scheme on stale-gradients, 
(practicality: scale down correct but stale gradients)

41

Kardam: the filtering scheme (Lipschitz)

1) Worker p sends gradient and declares Kp, its empirical gradient rate of growth 
  
Kp (declared by worker, considered by server to estimate quantiles):  

2) Server does not trust the worker and assigns to worker p, where 
 

 (considered by server to filter) 

3) Kp are still useful (since a majority will not cheating) to evaluate the quantiles
of declared Kp. 
 

4) Workers whose falls into the n-f/n quantile are trusted, others
are ignored (potential loss of work).

42

Kardam: Byzantine resilience

Passing the filter guarantees:

As long as gradient estimators make sense, i.e

- As long as gradients are large
- As long as variance is small (batch-size is high enough)

Kardam makes provable progress (cone is smaller than π/2)

43

remarks

- Computing the empirical growth rate of gradients, is still a
very naive way of estimating the curvature

- Frequency filter probably still too restrictive (no optimality
was proven on number of participations)

44

Summary
This presentation:  

- Formulating the Byzantine SGD question
- Initial solution in the synchronous case  
 
NeurIPS 2017a 

- Strengthening synchronous solutions for high dimension / non convexity  
 
ICML 2018a  

- Initial (and so far only) solution to the asynchronous case  
 
ICML 2018b

Remaining challenges:  

A better understanding of the optimisation tool-box,
Leverage recent results in neural nets theory to reduce model-dependant / data-
dependent unknowns,  
Server-side, decentralised SGD without SMR…

45

Summary
This presentation:  

- Formulating the Byzantine SGD question
- Initial solution in the synchronous case NeurIPS 2017a  

- Strengthening synchronous solutions for high dimension / non convexity ICML 2018a 

- Initial (and so far only) solution to the asynchronous case ICML 2018b

During this PhD: 

- Robustness of Neural Networks as Distributed System IPDPS 2017, SRDS 2017
- Robustness in Systems Biology BDA 2017, Biorxiv 487348
- Gathering behaviours with reinforcement learning Bulletin of the EATCS 2019
- Testing the Byzantine SGD algorithms on a systems level SysML 2019
- Safety in reinforcement learning NeurIPS 2017b, arXiv:1805.11447

Ongoing:

- Byzantine servers without SMR
- More on the robustness of Neural Nets
- Asynchrony and curvature…

46

is a little really enough?
- Gradient norm is small close to convergence (early stopping is enough)
- proposed times
- We tested it: Bulyan never prevented from convergence, same accuracy as

without the proposed attack
- out of topic: black box (choose a loss, propose a gradient from it)

(average + 1.5σ)coordinate−wise f

47

(a little is enough) Bulyan (our attack) for comparison

server-side
- Ongoing work with (1) SR and (2) AG

- 1: workers (Byzantine) and servers (Byzantine) on asynchronous
network problem is drift of honest parameters, tackled with an anti-drift
mechanism (a median on parameters that a received at a server).
- Issue: still strong hypothesis on alignment of parameters on correct

workers
- but: verified empirically (but no reason it applies to all models and all

datasets)
- 2: Kardam-like filter on models, synchronous training, Krum on workers, norm

growth filter instead of growth rate filter

n f N F

N − F

48

convex, model-dependence, etc

- Hypothesis hide a few model/data-dependent variables
- need to go down to more convex settings for exact hypothesis (ours are indicative

(e.g. how much exactly the batch-size))

49

Kardam: the filtering scheme (frequency)

Specification:

The frequency filter ensures that any sequence of length ~ 2f consequently
accepted gradients contains at least ~ f gradients computed by honest
workers.

How:

L: list of ids of the workers that contributed the last 2f gradients,
accept p (if passed the Lipschitz filter) as long as

(we can do better) 50

Kardam: the staleness-aware component

Update takes “declared” staleness of the worker into account and scales it down
with

With M=1 in “pure” asynchrony (one gradient per update)

Generic SAware scheme, interesting in its own right - makes Kardam work
practically, outperforms alternatives (that are actually subcases of it)

51

Kardam: the staleness-aware scheme

Update takes “declared” staleness of the worker into account and scales it down
with

Adaptive learning rate.

Ɣ: baseline learning rate
µt: incorporate total staleness at epoch t

52

Kardam: convergence guarantee

Replacing unbiasedness by our correct cone alternative, the ergodic (Zhang et al. 2015, Jiang et

al. 2017) convergence proof guarantees that:

D: the global confinement of the cost function
K: the global lipschitz bound
And parameters of the adaptive learning rate (details in the paper) 53

Experiments

Same remark as first talk: no Byzantine resilience is proven with
experiments, only vulnerability can be proven with an attack

However… Kardam has some merits besides Byzantine resilience since “pure”
asynchrony ~ Byzantine 
(+ knowledge of f→ less lost gradients)

54

