
Distributed Algorithms
Fall 2019

GM & VSC
8th exercise session, 18/11/2019

Matteo Monti <matteo.monti@epfl.ch>
Athanasios Xygkis <athanasios.xygkis@epfl.ch>

1

mailto:matteo.monti@epfl.ch
mailto:athanasios.xygkis@epfl.ch

Exercise 1 - Weakest failure detector

Show that P is the weakest failure detector for Group Membership.

Note: the failure detector D is weakest for solving some problem A (e.g.,
Consensus or NBAC) if D provides the smallest amount of information about
failures that allows to solve A.

Hint: Reduce Group Membership to Perfect Failure Detector and vice versa.

2

Exercise 1 - Solution (1/2)

In order to show that P is the weakest failure detector for Group Membership, we
need to that that:

1. P can be used to implement Group Membership.
2. Group Membership can be used to implement P.

For (1), the proof is the algorithm given in the class.

● The perfect FD satisfies the completeness and accuracy properties of GM,
● The Uniform Consensus (an implementation of which also uses the perfect FD) satisfies agreement

property of GM,
● The fact that a process forms a new view only when the set of correct processes is properly

contained in the current view membership satisfies the new monotonicity property. 3

Exercise 1 - Solution (2/2)

For (2), assume that all processes run a GM algorithm. We can implement a
perfect failure detector as follows:

Whenever a new view is installed, all processes that are freshly removed from the view are added to the
detected set.

This approach satisfies both Strong Completeness and Strong Accuracy, directly from the corresponding
properties of GM.

4

Exercise 2 - Properties of VSC with Joins (1/2)

The view-synchronous communication (VSC) abstraction presented in class does
not allow joins of new processes.

Answer to the following questions:

1. Why are the properties of VSC (as given in the class) not suitable for
accommodating the joins of new processes?

5

Exercise 2 - Solution of part 1 (1/2)

The properties of VSC for the case of crashes:

1. Properties of Reliable Broadcast (Validity, No creation, No duplication,
Agreement),

2. Properties of Group Membership,

3. Extra property (View inclusion): If some process delivers a message m from
process p in view V, then m was broadcast by p in view V.

6

Exercise 2 - Solution of part 1 (2/2)
The properties of GM - as presented in the class - are crash-specific:

1. Local monotonicity: If a process p install a view V = (i, M) and subsequently installs a view V’=(j, M’), then i < j and
M⊇M’,

○ The fact the view always shrinks is true for crashes, but not for joins

2. Uniform Agreement: If some process installs a view V=(i, M), and another process installs some view V’=(i, M’), then
M=M’,

○ This one is OK

3. Completeness: If a process p crashes, then eventually every correct process install a view (i, M), such that p∉M,
○ Assumes crashes, does not impose any condition for joins

4. Accuracy: If some process installs a view (i, M) with q∉M for some process q∈Π, then q has crashed
○ Assumes crashes, does not impose any condition for joins

Conclusion: Properties 1, 3, 4 are not suitable for Joins and need to be rectified.

7

Exercise 2 - Properties of VSC with Joins (2/2)

2. Change the properties of VSC, so that they allow for implementations that
support the joins of new processes.

Assume that these implementations already provide the events <Join|p> and
<JoinOK> and focus solely on the properties.

Hint: focus on the properties of group membership.

8

Exercise 2 - Solution of part 2 (1/5)

Local Monotonicity. There are two ways to rectify monotonicity for joins:

1. LM1 (Not not allow no-op view changes): If a process installs a view V=(i, M)
and then installs view (i+1, N), then M≠N.

With LM1, notice that:
a. Consecutive views must different set of processes.
b. Different views can have the set of processes. E.g. if process q joins and then crashes the sequence

of view will be: (i, M) → (i+1, M ⋃ {q}) → (i+2, M).
c. Processes can repeatedly be included and excluded from a view (i.e. no monotonicity ~ view

oscillation). E.g. process q joins, crashes, restarts, joins again.

9

Exercise 2 - Solution of part 2 (2/5)

2. LM2 (Do not allow view oscillations, i.e. definite crashes): If a process p
installs views (i, N) and (j, M) where j>i, q∈N, and q∉M, then for all k>j, if p
installs view (k, O), then q∉O.

With LM2, notice that:
a. Once a process is excluded from a view it can never come back.
b. In practice, for a process to come back a new process id must be adopted.

10

Exercise 2 - Solution of part 2 (3/5)

Completeness:

1. C1 (If we adopt LM1):
a. If a process p crashes, then ∃ i∈ℕ such that for all correct processes q, if j>i and q install

view (j,M), then p∉M.

This statement says that a crashed process is removed from a future view, not from all future views!

b. If a correct process q requests to join,then ∃ i∈ℕ such that every correct process installs
view (i, M), such that p∈M.

This statement that processes that want to join, eventually join!

2. C2 (If we adopt LM2):
a. Stays the same, i.e. if a process p crashes, then eventually every correct process install a view (i, M), such

that p∉M.
b. Same as (b) from C1.

11

Exercise 2 - Solution of part 2 (4/5)

The following properties apply to both LM1/C1 and LM2/C2.

Accuracy:
If a process p installs views (i, M) and (i+1, N) where q∈M but q∉N, then q has
crashed.

Notice the difference with the accuracy property given in the class. This property detects crashes by
comparing views, since new processes can join during the execution (i.e. the set Π is not known in
advance).

Validity:
To be technically correct, we require the following property:
If some process p installs a view (i, M) and some process q is in M, then q
previously requested to join or q∈Π.

12

Exercise 2 - Solution of part 2 (5/5)

The following properties apply to both LM1/C1 and LM2/C2.

The agreement property of the Reliable Broadcast requires changing.
1. A1 (Keep original agreement property):

a. If a message m is delivered by some correct process, then m is eventually delivered by every
correct process.

b. For (a) to hold, we have to make sure that when a process joins, it has to catch-up of all
previously delivered messages.

2. A2 (Deliver only messages from views that the process participates in):
a. If a message m is delivered by some correct process in view (i, M), then m is eventually

delivered by all the processes belonging to M.
b. This way, if p∉Μ, then p does not have to deliver m.

View Inclusion: We keep it unchanged.
Note: The view inclusion does not conflict with the agreement property above. The view inclusion talk about “where to
deliver”, while the agreement property talk about “when to deliver”.

13

Exercise 3 - VSC with Joins (Bonus)

Implement joins on the Consensus-based algorithm (Algorithm II) of VSC.

14

Exercise 3 - Solution (1/5)
Modifications are shown in red

15

● crashed is a set that tracks the events from the
failure detector.

○ It is useful in executions where a process
attempts to join and then crashes. If another
correct process “sees” the join attempt after
the crash notification, it uses the crashed set
to disregard the join.

● joined is set to true after the process successfully
joins a view.

Exercise 3 - Solution (2/5)
Modifications are shown in red

16

This is the original algorithm, except that we
have the extra condition:

The logic should execute only for processes
that have successfully joined a view (e.g. the
initial set of processes).

Note: correct and crashed set are
update together.

Also, the condition changed to correct
≠M, instead of correct⊊M

Exercise 3 - Solution (3/5)
Modifications are shown in red

17

No surprises here

Exercise 3 - Solution (4/5)
Modifications are shown in red

18

The joining begins when a process emits a join event. If a process has
not joined yet and is not part of the initial set of processes in the view,
the process broadcasts a JoinReq message.

Since the joining process uses BEB-broadcast, correct processes will
eventually receive the JoinReq broadcast (if, of course, the joining
process is also correct).

Upon receiving a JoinReq, processes will add the joining processes to
their correct set. Changing the correct set will trigger the handler “upon
correct ≠M …” and initiate a view change.

Note:
● It is the job of the receiving correct processes (that are already view members) to handle the JoinReq and

propose the addition of the joining process to a view.
● If the receiving process has already seen a crash of the joining process, the correct set will not be changed, since

{p}\crashed will be ∅.

Exercise 3 - Solution (5/5)
Modifications are shown in red

19

Processes that have seen the broadcast from the joining process will
propose it in the new view member set.

Also, every process broadcasts the new view (both its member set
and id).

This broadcast is useful for joining processes. If a joining
process sees that it is part of a new view, it will initialize its view
id, member set and correct set accordingly. Finally, the joining
process sets the joined flag to true (meaning that it will handle
all buffered events) and emits a JoinOk indication to the
application.

