
Distributed Algorithms
Fall 2019

Links & Gossip
2nd exercise session, 30/09/2019

Matteo Monti <matteo.monti@epfl.ch>
Athanasios Xygkis <athanasios.xygkis@epfl.ch>

mailto:matteo.monti@epfl.ch
mailto:athanasios.xygkis@epfl.ch


Graphs

Example graph (V, E): 

● V = {a, b, c, d, e}
● E = {(a, b), (b, c), (b, e), (e, d)}

a b

d ce

A graph is a couple (V, E) where V is a set of vertices and E ⊆ V2 is a set of 
edges.

Two vertices are adjacent (or neighbors) iff an edge exists between them. In the 
example, a and b are adjacent; a and d are not adjacent.



Graphs (undirected)

Example graph (V, E): 

● V = {a, b, c, d, e}
● E = {(a, b), (b, a), (b, c), (c, b), (b, e), 

(e, b), (e, d), (d, e)}

a b

d ce

An undirected graph is a graph (V, E) such that (a, b) ∈ E if and only if (b, a) ∈ 
E.

We use undirected graphs to model networks of processes:

● Each vertex represents a process
● Two vertices are neighbors iff the corresponding processes can directly exchange messages.



Some paths in (V, E): 

● (a, b)
● (a, b, c)
● (a, b, e, d)

While

● (a, c, e) is not a path: a and c are not 
adjacent!

Paths

a b

d ce

A path is a sequence of distinct vertices (v1, …, vN) such that, for all i ∈ [1, N - 1], 
vi and vi+1 are adjacent.



Connectivity

a b

d ce

Two distinct vertices a and z are connected if and only if at least one path 
(a, …, z) exists in the graph. A graph is connected if any two distinct vertices 
are connected.

a b

d ce

A connected graph A disconnected graph



Exercise 1 (connectivity)

Prove that connectivity is a symmetric property on an undirected graph: let a, b 
be vertices such that a is connected with b. Prove that b is connected with a.

Hint: you can do it constructively.



Exercise 1 (solution)

● If a is connected to b, then a path p exists from a to b. 
Let p = (a, v1, …, vN, b).

● Since the graph is undirected, if v is adjacent to w, then w is adjacent to v.

● Therefore, the sequence p’ = (b, vN, …, v1, a) is also a path. 

● Since p’ begins in b and ends in a, a path exists between b and a.
Consequently, b is connected to a.



Exercise 2 (connectivity)

Prove that connectivity is a transitive property on an undirected graph: let a, b, 
c be vertices such that a is connected with b and b is connected with c. Prove that 
a is connected with c.

Hint: double-check the definition of a path.



● Let p = (v1, …, vN) and q = (w1, …, wM) be the paths from a to b and from b to 
c, respectively. We have v1 = a, vN = w1 = b, wM = c.

● We note that (v1, …, vN, w2, …, wM) is in general not a path, as the vertices 
are not guaranteed to be disjoint.

● If a ∈ q, then a and c are trivially connected. Indeed, a subpath q’ = (wK, …, 
wM) already exists in q such that wK = a and wM = c.

● If ¬(a ∈ q), then let vK= wH be the first element of p that is also in q. Since vN 
= w1 = b, vK is guaranteed to exist.

● By definition, v1, …, vK - 1 are not in q. Therefore, r = (v1, …, vK, wH + 1, …, wM) 
is a path.

● Since r begins in a and ends in c, a and c are connected.

Exercise 2 (solution)



Exercise 3 (connectivity)

Write a procedure (pseudocode or any programming language) that inputs an 
undirected graph G = (V, E) and outputs true if and only if the G is connected.

Hint: use the results from Exercises 1 and 2.



We start by noting that, since connectivity is symmetric and transitive, we only need to check 
if any node is connected to every other. We can implement the following algorithm:

● Pick any vertex v from V. Initialize a frontier set F = {v}. Initialize an interior set I = ∅.
● Until F is empty:

○ Pick an element f from F. Remove f from F, add f to I.
○ For every neighbor n of f:

■ If ¬(n ∈ F ∪ I), add n to F. 
● If I = V, then G is connected.

Let w be any vertex, if and only if path exists between v and w, then w is eventually added to 
F, then removed from F and added to I. If eventually I = V, then every vertex is connected to 
v, and consequently G is connected.

Exercise 3 (solution)



Gossip

Example: diffusion of a message m from 
process e.

● e issues m

a b

d ce

We use an undirected graph to represent which processes can communicate. 
Upon receiving a new message m, a process forwards m to all its neighbors.



Gossip

Example: diffusion of a message m from 
process e.

● e issues m.
● b and d receive m.

a b

d ce

We use an undirected graph to represent which processes can communicate. 
Upon receiving a new message m, a process forwards m to all its neighbors.



Gossip

Example: diffusion of a message m from 
process e.

● e issues m.
● b and d receive m.
● a and c receive m.

a b

d ce

We use an undirected graph to represent which processes can communicate. 
Upon receiving a new message m, a process forwards m to all its neighbors.

Gossip is correct if and only if, if the sender is correct, every correct process 
eventually receives the message.



Exercise 4 (gossip)

Prove that gossip is correct if and only if the subgraph of correct processes is 
connected. 

Note: prove both directions of the implication!

Hint: induction is your friend.



If the subgraph of correct processes is connected, then gossip is correct. 

Let G = (V, E) be the gossip network, let N = |V|, let s be the sender. By induction:

● Let s be the sender. We obviously have that s eventually delivers the message m.
● Let VL denote the set of vertices that are connected to s by a path no longer than L. We have 

V0 = {s}.
● Let NL denote the set of vertices that have at least one neighbor in VL. If every process in VL 

eventually delivers m, then also every process in NL delivers m (as m is sent to every 
neighbor).

● Since NL∪ VL = VL + 1, if every process in VL eventually delivers m then every process in VL + 1 
eventually delivers m.

● Since all the vertices in a path are distinct, no path longer than N can exist on the gossip 
path. Therefore, V = VN. Consequently, every node in V eventually delivers m.

Exercise 4 (solution)



If gossip is correct, then the subgraph of correct processes is connected.

Let G = (V, E) be the gossip network, let N = |V|, let s be the sender.

● Let v ≠ s be a correct process.  Regardless of the crashes, v eventually delivers m. Therefore, 
v eventually receives m from a correct process.

● We use induction similarly to the previous slide, defining WL as the set of processes that are 
connected to v by a path not longer than L.

● Let i ∈ [0, N]. If Wi includes s, then v is connected to s.
● If Wi does not include s, then at least one process in Wi eventually receives m from one of its 

neighbors, and that neighbor is not in Wi.
● Since the size of Wi is strictly increasing until Wi includes s, we have that WN must include s.
● Since this holds true for every v, every process is connected to s, making the subgraph of 

correct processes connected.

Exercise 4 (solution)



Exercise 5 (gossip)

In the following system, exactly one process crashes. What is the minimum 
number of edges we need to add so that gossip is always correct?

a b

d ce



Exercise 5 (solution)

In the following system, exactly one process crashes. What is the minimum 
number of edges we need to add so that gossip is always correct?

a b

d ce



k-connectivity
Two paths p, p’ connecting two vertices a and z are disjoint if they have no vertex 
in common, except a and z: 

                                             p = (a, b, …, y, z) 

                                             p’ = (a, b’, …, y’, z) 

                                {a, b, …, y, z} ∩ {a, b’, …, y’, z} = {a, z}

A graph is k-connected if and only if k disjoint paths exist between any two 
vertices of the graph.



Robustness
Gossip is robust to k failures if and only if it is always correct, as long as no more 
than k nodes are crashed.

a b

d e

A fully connected gossip graph is robust to N failures, 
where N is the number of processes.



Exercise 6 (robustness)

Prove that, if the gossip graph is (k+1)-connected, then gossip is k-robust.

Is the converse also true? Find a counterexample if not.

Hint: contradiction is your friend.



● By contradiction, let us assume that gossip is (k + 1)-connected, but k 
processes exist such that, if they all crash, then two correct processes a and 
b are no longer connected.

● By hypothesis, (k + 1) distinct paths p1, …, pk + 1 exist between a and b.
● If some i exists such that no process crashes in pi, then a and b are still 

connected by correct processes, and (as we proved in Exercise 4) they can 
gossip with each other.

● Since p1, …, pk + 1 are all distinct, at least one distinct process must crash in 
each pi for a and b to be disconnected. But at most k processes can crash!

Exercise 6 (solution)



Technically:

But does it still work for N > 2 ?

Exercise 6 (solution)

a b



Random failures
Suppose that processes can fail independently with probability f. 

What is the probability that two correct processes can communicate in the 
presence of failures? 

It depends on their connectivity!

e.g. α βx

Probability of 
failure f

α, β can communicate iff x 
has not failed =>

α, β communicate with 
probability 1-f.



Exercise 7 (random failures on series topology)
Suppose that processes xi , i=1, …, n can fail independently with probability f. 

What is the probability that a and b can communicate?

a x1 βx2 xn



● Each process survives (i.e., it does not fail) with independent 
probability (1 - f).

● Therefore, all processes survive with probability (1 - f)n.

Exercise 7 (solution)



Exercise 8 (random failures on parallel topology)
Suppose that processes xi , i=1, …, n can fail independently with probability f. 

What is the probability that a and b can communicate?

a

x1

xn

x2
β

. . . 



Exercise 8 (solution)

● Each process fails with independent probability f.
● Therefore, all processes fail with probability fn.
● Finally, at least one process survives with probability (1 - fn).



Exercise 9 (random failures on series/parallel topology)
Suppose that processes xij , i=1, …, n, j=1, …, m can fail independently with 
probability f. 

Prove that a and b can communicate with probability 1 - [1 - (1-f)m]n.

a

x11

β

x12 x1m

x21 x22 x2m

xn1 xn2 xnm

. . . 



● As we proved in Exercise 7, every branch fails with 
independent probability g = 1 - (1 - f)m.

● We can now consider each branch as if it was one of the processes in 
Exercise 8. The probability that no branch fails is 1 - gn = 1 - [1 - (1-f)m]n.

Exercise 9 (solution)



An Erdös-Renyi graph is defined by the values of 
N(N - 1)/2 independent Bernoulli random variables:

Eij ~ Bernoulli(p)
Eij = Eji

with i, j ∈ V. Vertices i and j are adjacent iff Eij = 1.

Erdös-Renyi graphs
An Erdös-Renyi graph G(N, p) is a random undirected graph with N vertices, such 
that any two distinct vertices have an independent probability p of being adjacent.

a b

d e

Example graph
      G(4, ½)

1

0
0

1

1
0



Bonus Exercise 10 (Erdös-Renyi graphs)

What distribution underlies the number of edges in an Erdös-Renyi G(N, p)?
What distribution underlies the degree (i.e., number of links) of any vertex?
Are the degrees of any two vertices independently distributed?

Hint: how is the sum of Bernoulli variables distributed?



Let C(N, p) denote the probability of a random graph G(N, p) being connected. 
It is possible to prove that:

lim[N→∞] G(N, p) = 0       iff p < ln(N) / N
lim[N→∞] G(N, p) = 1       iff p > ln(N) / N

A large Erdös-Renyi graph is almost surely connected, as long as each vertex has 
an expected degree larger than ln(N). 

We can use Erdös-Renyi graphs to build probabilistic gossip with 
logarithmic communication complexity!

Connectivity of G(N, p)



Bonus Exercise 11 (Erdös-Renyi graphs)

Write a distributed procedure that runs on N processes to build an Erdös-Renyi 
graph G(N, ln(N)/N). We assume no failures. Each process can invoke:

● A procedure rand(x) that returns a real number between 0 and x, 
independently picked with uniform probability.

● A procedure connect(i) to connect to the i-th process.

Is it possible for the procedure to have O(ln(N)) computation complexity?


