Distributed Algorithms

Fall 2019

Links & Gossip
2nd exercise session, 30/09/2019

Matteo Monti <matteo.monti@epfl.ch>
Athanasios Xygkis <athanasios.xygkis@epfl.ch>
Graphs

A graph is a couple \((V, E)\) where \(V\) is a set of vertices and \(E \subseteq V^2\) is a set of edges.

Example graph \((V, E)\):

- \(V = \{a, b, c, d, e\}\)
- \(E = \{(a, b), (b, c), (b, e), (e, d)\}\)

Two vertices are adjacent (or neighbors) iff an edge exists between them. In the example, \(a\) and \(b\) are adjacent; \(a\) and \(d\) are not adjacent.
Graphs (undirected)

An **undirected graph** is a graph \((V, E)\) such that \((a, b) \in E\) if and only if \((b, a) \in E\).

Example graph \((V, E)\):

- \(V = \{a, b, c, d, e\}\)
- \(E = \{(a, b), (b, a), (b, c), (c, b), (b, e), (e, b), (e, d), (d, e)\}\)

We use undirected graphs to model networks of processes:

- Each vertex represents a process
- Two vertices are neighbors iff the corresponding processes can directly exchange messages.
Paths

A path is a sequence of distinct vertices \((v_1, \ldots, v_N)\) such that, for all \(i \in [1, N - 1]\), \(v_i\) and \(v_{i+1}\) are adjacent.

Some paths in \((V, E)\):

- \((a, b)\)
- \((a, b, c)\)
- \((a, b, e, d)\)

While

- \((a, c, e)\) is not a path: a and c are not adjacent!
Connectivity

Two distinct vertices a and z are **connected** if and only if at least one path (a, \ldots, z) exists in the graph. A graph is connected if any two distinct vertices are connected.
Exercise 1 (connectivity)

Prove that connectivity is a symmetric property on an undirected graph: let a, b be vertices such that a is connected with b. Prove that b is connected with a.

Hint: you can do it constructively.
Exercise 1 (solution)

- If a is connected to b, then a path p exists from a to b. Let $p = (a, v_1, \ldots, v_N, b)$.

- Since the graph is undirected, if v is adjacent to w, then w is adjacent to v.

- Therefore, the sequence $p' = (b, v_N, \ldots, v_1, a)$ is also a path.

- Since p' begins in b and ends in a, a path exists between b and a. Consequently, b is connected to a.
Exercise 2 (connectivity)

Prove that connectivity is a transitive property on an undirected graph: let a, b, c be vertices such that a is connected with b and b is connected with c. Prove that a is connected with c.

Hint: double-check the definition of a path.
Exercise 2 (solution)

- Let \(p = (v_1, \ldots, v_N) \) and \(q = (w_1, \ldots, w_M) \) be the paths from \(a \) to \(b \) and from \(b \) to \(c \), respectively. We have \(v_1 = a, v_N = w_1 = b, w_M = c \).
- We note that \((v_1, \ldots, v_N, w_2, \ldots, w_M)\) is in general not a path, as the vertices are not guaranteed to be disjoint.
- If \(a \in q \), then \(a \) and \(c \) are trivially connected. Indeed, a subpath \(q' = (w_K, \ldots, w_M) \) already exists in \(q \) such that \(w_K = a \) and \(w_M = c \).
- If \(\neg(a \in q) \), then let \(v_K = w_H \) be the first element of \(p \) that is also in \(q \). Since \(v_N = w_1 = b \), \(v_K \) is guaranteed to exist.
- By definition, \(v_1, \ldots, v_{K-1} \) are not in \(q \). Therefore, \(r = (v_1, \ldots, v_K, w_{H+1}, \ldots, w_M) \) is a path.
- Since \(r \) begins in \(a \) and ends in \(c \), \(a \) and \(c \) are connected.
Exercise 3 (connectivity)

Write a procedure (pseudocode or any programming language) that inputs an undirected graph \(G = (V, E) \) and outputs \textit{true} if and only if the \(G \) is connected.

\textit{Hint: use the results from Exercises 1 and 2.}
Exercise 3 (solution)

We start by noting that, since connectivity is symmetric and transitive, we only need to check if any node is connected to every other. We can implement the following algorithm:

- Pick any vertex v from V. Initialize a frontier set $F = \{v\}$. Initialize an interior set $I = \emptyset$.
- Until F is empty:
 - Pick an element f from F. Remove f from F, add f to I.
 - For every neighbor n of f:
 - If $\neg(n \in F \cup I)$, add n to F.
- If $I = V$, then G is connected.

Let w be any vertex, if and only if path exists between v and w, then w is eventually added to F, then removed from F and added to I. If eventually $I = V$, then every vertex is connected to v, and consequently G is connected.
Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m
Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m.
- b and d receive m.
Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m.
- b and d receive m.
- a and c receive m.

Gossip is **correct** if and only if, if the sender is correct, every correct process eventually receives the message.
Exercise 4 (gossip)

Prove that gossip is correct if and only if the subgraph of correct processes is connected.

Note: prove both directions of the implication!

Hint: induction is your friend.
Exercise 4 (solution)

If the subgraph of correct processes is connected, then gossip is correct.

Let $G = (V, E)$ be the gossip network, let $N = |V|$, let s be the sender. By induction:

- Let s be the sender. We obviously have that s eventually delivers the message m.
- Let V_L denote the set of vertices that are connected to s by a path no longer than L. We have $V_0 = \{s\}$.
- Let N_L denote the set of vertices that have at least one neighbor in V_L. If every process in V_L eventually delivers m, then also every process in N_L delivers m (as m is sent to every neighbor).
- Since $N_L \cup V_L = V_{L+1}$, if every process in V_L eventually delivers m then every process in V_{L+1} eventually delivers m.
- Since all the vertices in a path are distinct, no path longer than N can exist on the gossip path. Therefore, $V = V_N$. Consequently, every node in V eventually delivers m.
Exercise 4 (solution)

If gossip is correct, then the subgraph of correct processes is connected.

Let $G = (V, E)$ be the gossip network, let $N = |V|$, let s be the sender.

- Let $v \neq s$ be a correct process. Regardless of the crashes, v eventually delivers m. Therefore, v eventually receives m from a correct process.
- We use induction similarly to the previous slide, defining W_L as the set of processes that are connected to v by a path not longer than L.
- Let $i \in [0, N]$. If W_i includes s, then v is connected to s.
- If W_i does not include s, then at least one process in W_i eventually receives m from one of its neighbors, and that neighbor is not in W_i.
- Since the size of W_i is strictly increasing until W_i includes s, we have that W_N must include s.
- Since this holds true for every v, every process is connected to s, making the subgraph of correct processes connected.
Exercise 5 (gossip)

In the following system, exactly one process crashes. What is the minimum number of edges we need to add so that gossip is always correct?
Exercise 5 (solution)

In the following system, exactly one process crashes. What is the minimum number of edges we need to add so that gossip is always correct?
k-connectivity

Two paths p, p' connecting two vertices a and z are **disjoint** if they have no vertex in common, except a and z:

$$p = (a, b, ..., y, z)$$

$$p' = (a, b', ..., y', z)$$

$$\{a, b, ..., y, z\} \cap \{a, b', ..., y', z\} = \{a, z\}$$

A graph is **k-connected** if and only if k disjoint paths exist between any two vertices of the graph.
Robustness

Gossip is robust to k failures if and only if it is always correct, as long as no more than k nodes are crashed.

A fully connected gossip graph is robust to N failures, where N is the number of processes.
Exercise 6 (robustness)

Prove that, if the gossip graph is \((k+1)\)-connected, then gossip is \(k\)-robust.

Is the converse also true? Find a counterexample if not.

Hint: contradiction is your friend.
Exercise 6 (solution)

- By contradiction, let us assume that gossip is \((k + 1)\)-connected, but \(k\) processes exist such that, if they all crash, then two correct processes \(a\) and \(b\) are no longer connected.
- By hypothesis, \((k + 1)\) distinct paths \(p_1, \ldots, p_{k+1}\) exist between \(a\) and \(b\).
- If some \(i\) exists such that no process crashes in \(p_i\), then \(a\) and \(b\) are still connected by correct processes, and (as we proved in Exercise 4) they can gossip with each other.
- Since \(p_1, \ldots, p_{k+1}\) are all distinct, at least one distinct process must crash in each \(p_i\) for \(a\) and \(b\) to be disconnected. But at most \(k\) processes can crash!
Exercise 6 (solution)

Technically:

But does it still work for $N > 2$?
Random failures

Suppose that processes can fail independently with probability f.

What is the probability that two *correct* processes can communicate in the presence of failures?

It depends on their connectivity!

e.g. α, β can communicate iff x has not failed \Rightarrow

α, β communicate with probability $1-f$.

Probability of failure f
Exercise 7 (random failures on series topology)

Suppose that processes x_i, $i=1, \ldots, n$ can fail independently with probability f.

What is the probability that a and b can communicate?
Exercise 7 (solution)

- Each process survives (i.e., it does not fail) with independent probability $(1 - f)$.
- Therefore, all processes survive with probability $(1 - f)^n$.
Exercise 8 (random failures on parallel topology)

Suppose that processes x_i, $i=1, \ldots, n$ can fail independently with probability f.

What is the probability that a and b can communicate?
Exercise 8 (solution)

- Each process fails with independent probability f.
- Therefore, all processes fail with probability f^n.
- Finally, at least one process survives with probability $(1 - f^n)$.
Exercise 9 (random failures on series/parallel topology)

Suppose that processes x_{ij}, $i=1, \ldots, n$, $j=1, \ldots, m$ can fail independently with probability f.

Prove that a and b can communicate with probability $1 - [1 - (1-f)^m]^n$.
Exercise 9 (solution)

- As we proved in Exercise 7, every *branch* fails with independent probability $g = 1 - (1 - f)^m$.
- We can now consider each *branch* as if it was one of the processes in Exercise 8. The probability that no branch fails is $1 - g^n = 1 - [1 - (1-f)^m]^n$.
Erdös-Renyi graphs

An Erdös-Renyi graph $G(N, p)$ is a random undirected graph with N vertices, such that any two distinct vertices have an independent probability p of being adjacent.

An Erdös-Renyi graph is defined by the values of $N(N - 1)/2$ independent Bernoulli random variables:

$$E_{ij} \sim \text{Bernoulli}(p)$$

$$E_{ij} = E_{ji}$$

with $i, j \in V$. Vertices i and j are adjacent iff $E_{ij} = 1$.

Example graph $G(4, \frac{1}{2})$
What distribution underlies the number of edges in an Erdös-Renyi $G(N, p)$? What distribution underlies the degree (i.e., number of links) of any vertex? Are the degrees of any two vertices independently distributed?

Hint: how is the sum of Bernoulli variables distributed?
Connectivity of $G(N, p)$

Let $C(N, p)$ denote the probability of a random graph $G(N, p)$ being connected. It is possible to prove that:

\[
\lim_{N \to \infty} G(N, p) = 0 \quad \text{iff} \quad p < \frac{\ln(N)}{N}
\]

\[
\lim_{N \to \infty} G(N, p) = 1 \quad \text{iff} \quad p > \frac{\ln(N)}{N}
\]

A large Erdős-Renyi graph is almost surely connected, as long as each vertex has an expected degree larger than $\ln(N)$.

We can use Erdős-Renyi graphs to build probabilistic gossip with logarithmic communication complexity!
Bonus Exercise 11 (Erdös-Renyi graphs)

Write a distributed procedure that runs on \(N \) processes to build an Erdös-Renyi graph \(G(N, \ln(N)/N) \). We assume no failures. Each process can invoke:

- A procedure \(\text{rand}(x) \) that returns a real number between 0 and \(x \), independently picked with uniform probability.
- A procedure \(\text{connect}(i) \) to connect to the \(i \)-th process.

Is it possible for the procedure to have \(O(\ln(N)) \) computation complexity?