A graph is a couple \((V, E)\) where \(V\) is a set of vertices and \(E \subseteq V^2\) is a set of edges.

Two vertices are adjacent (or neighbors) iff an edge exists between them. In the example, \(a\) and \(b\) are adjacent; \(a\) and \(d\) are not adjacent.
Graphs (undirected)

An undirected graph is a graph \((V, E)\) such that \((a, b) \in E\) if and only if \((b, a) \in E\).

Example graph \((V, E)\):

- \(V = \{a, b, c, d, e\}\)
- \(E = \{(a, b), (b, a), (b, c), (c, b), (b, e), (e, b), (e, d), (d, e)\}\)

We use undirected graphs to model networks of processes:

- Each vertex represents a process
- Two vertices are neighbors iff the corresponding processes can directly exchange messages.
 Paths

A **path** is a sequence of distinct vertices \((v_1, ..., v_N)\) such that, for all \(i \in [1, N - 1]\), \(v_i\) and \(v_{i+1}\) are adjacent.

Some paths in \((V, E)\):

- \((a, b)\)
- \((a, b, c)\)
- \((a, b, e, d)\)

While

- \((a, c, e)\) is **not** a path: \(a\) and \(c\) are not adjacent!
Connectivity

Two distinct vertices \(a \) and \(z \) are **connected** if and only if at least one path \((a, \ldots, z)\) exists in the graph. A graph is connected if any two distinct vertices are connected.

![A connected graph](image1.png)

![A disconnected graph](image2.png)
Exercise 1 (connectivity)

Prove that connectivity is a symmetric property on an undirected graph: let a, b be vertices such that a is connected with b. Prove that b is connected with a.

Hint: you can do it constructively.
Exercise 2 (connectivity)

Prove that connectivity is a transitive property on an undirected graph: let a, b, c be vertices such that a is connected with b and b is connected with c. Prove that a is connected with c.

Hint: double-check the definition of a path.
Exercise 3 (connectivity)

Write a procedure (pseudocode or any programming language) that inputs an undirected graph \(G = (V, E) \) and outputs true if and only if the \(G \) is connected.

Hint: use the results from Exercises 1 and 2.
Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m
Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m.
- b and d receive m.
Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m.
- b and d receive m.
- a and c receive m.

Gossip is **correct** if and only if, if the sender is correct, every correct process eventually receives the message.
Exercise 4 (gossip)

Prove that gossip is correct if and only if the subgraph of correct processes is connected.

Note: prove both directions of the implication!

Hint: induction is your friend.
Exercise 5 (gossip)

In the following system, exactly one process crashes. What is the minimum number of edges we need to add so that gossip is always correct?
k-connectivity

Two paths p, p' connecting two vertices a and z are **disjoint** if they have no vertex in common, except a and z:

$$p = (a, b, ..., y, z)$$

$$p' = (a, b', ..., y', z)$$

$$\{a, b, ..., y, z\} \cap \{a, b', ..., y', z\} = \{a, z\}$$

A graph is **k-connected** if and only if k disjoint paths exist between any two vertices of the graph.
Robustness

Gossip is robust to k failures if and only if it is always correct, as long as no more than k nodes are crashed.

A fully connected gossip graph is robust to N failures, where N is the number of processes.
Exercise 6 (robustness)

Prove that, if the gossip graph is \((k+1)\)-connected, then gossip is \(k\)-robust.

Is the converse also true? Find a counterexample if not.

Hint: contradiction is your friend.
Random failures

Suppose that processes can fail independently with probability f.

What is the probability that two correct processes can communicate in the presence of failures?

It depends on their connectivity!

e.g.

alpha, beta can communicate iff x has not failed =>

alpha, beta communicate with probability $1-f$.
Exercise 7 (random failures on series topology)

Suppose that processes $x_i, i=1, \ldots, n$ can fail independently with probability f.

What is the probability that a and b can communicate?
Exercise 8 (random failures on parallel topology)

Suppose that processes x_i, $i=1, \ldots, n$ can fail independently with probability f.

What is the probability that a and b can communicate?
Exercise 9 (random failures on series/parallel topology)

Suppose that processes $x_{ij}, i=1, \ldots, n, j=1, \ldots, m$ can fail independently with probability f.

Prove that a and b can communicate with probability $1 - [1 - (1-f)^m]^n$.

![Diagram](image-url)
Erdös-Renyi graphs

An Erdös-Renyi graph $G(N, p)$ is a random undirected graph with N vertices, such that any two distinct vertices have an independent probability p of being adjacent.

An Erdös-Renyi graph is defined by the values of $N(N - 1)/2$ independent Bernoulli random variables:

$$E_{ij} \sim \text{Bernoulli}(p)$$

$$E_{ij} = E_{ji}$$

with $i, j \in V$. Vertices i and j are adjacent iff $E_{ij} = 1$.

Example graph $G(4, \frac{1}{2})$
Bonus Exercise 10 (Erdös-Renyi graphs)

What distribution underlies the number of edges in an Erdös-Renyi $G(N, p)$? What distribution underlies the degree (i.e., number of links) of any vertex? Are the degrees of any two vertices independently distributed?

Hint: how is the sum of Bernoulli variables distributed?
Connectivity of $G(N, p)$

Let $C(N, p)$ denote the probability of a random graph $G(N, p)$ being connected. It is possible to prove that:

$$\lim_{N \to \infty} G(N, p) = 0 \quad \text{iff} \quad p < \frac{\ln(N)}{N}$$

$$\lim_{N \to \infty} G(N, p) = 1 \quad \text{iff} \quad p > \frac{\ln(N)}{N}$$

A large Erdös-Renyi graph is almost surely connected, as long as each vertex has an expected degree larger than $\ln(N)$.

We can use Erdös-Renyi graphs to build probabilistic gossip with logarithmic communication complexity!
Bonus Exercise 11 (Erdös-Renyi graphs)

Write a distributed procedure that runs on N processes to build an Erdös-Renyi graph $G(N, \ln(N))$. We assume no failures. Each process can invoke:

- A procedure $\text{rand}(x)$ that returns a real number between 0 and x, independently picked with uniform probability.
- A procedure $\text{connect}(i)$ to connect to the i-th process.

Is it possible for the procedure to have $O(\ln(N))$ computation complexity?