Distributed Algorithms

Fall 2019

Links \& Gossip 2nd exercise session, 30/09/2019

Matteo Monti matteo.monti@epfl.ch
Athanasios Xygkis athanasios.xygkis@epfl.ch

Graphs

A graph is a couple (V, E) where V is a set of vertices and $E \subseteq V^{2}$ is a set of edges.

Example graph (V, E):

- $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$
- $E=\{(a, b),(b, c),(b, e),(e, d)\}$

Two vertices are adjacent (or neighbors) iff an edge exists between them. In the example, a and b are adjacent; a and d are not adjacent.

Graphs (undirected)

An undirected graph is a graph (V, E) such that $(a, b) \in E$ if and only if $(b, a) \in$ E.

Example graph (V, E):

- $V=\{a, b, c, d, e\}$
- $E=\{(a, b),(b, a),(b, c),(c, b),(b, e)$,
$(e, b),(e, d),(d, e)\}$

We use undirected graphs to model networks of processes:

- Each vertex represents a process
- Two vertices are neighbors iff the corresponding processes can directly exchange messages.

Paths

A path is a sequence of distinct vertices $\left(v_{1}, \ldots, v_{N}\right)$ such that, for all $i \in[1, N-1]$, v_{i} and v_{i+1} are adjacent.

Some paths in (V, E):

- (a, b)
- (a, b, c)
- (a, b, e, d)

While

- (a, c, e) is not a path: a and c are not adjacent!

Connectivity

Two distinct vertices a and z are connected if and only if at least one path (a, \ldots, z) exists in the graph. A graph is connected if any two distinct vertices are connected.

A connected graph

A disconnected graph

Exercise 1 (connectivity)

Prove that connectivity is a symmetric property on an undirected graph: let a, b be vertices such that a is connected with b. Prove that b is connected with a.

Exercise 1 (solution)

- If a is connected to b, then a path p exists from a to b.

$$
\text { Let } p=\left(a, v_{1}, \ldots, v_{N^{\prime}}, b\right) \text {. }
$$

- Since the graph is undirected, if v is adjacent to w, then w is adjacent to v.
- Therefore, the sequence $p^{\prime}=\left(b, v_{N}, \ldots, v_{1}, a\right)$ is also a path.
- \quad Since p^{\prime} begins in b and ends in a, a path exists between b and a. Consequently, b is connected to a.

Exercise 2 (connectivity)

Prove that connectivity is a transitive property on an undirected graph: let a, b, c be vertices such that a is connected with b and b is connected with c. Prove that a is connected with c.

Exercise 2 (solution)

- Let $p=\left(v_{1}, \ldots, v_{N}\right)$ and $q=\left(w_{1}, \ldots, w_{M}\right)$ be the paths from a to b and from b to c, respectively. We have $v_{1}=a, v_{N}=w_{1}=b, w_{M}=c$.
- We note that $\left(v_{1}, \ldots, v_{N}, w_{2}, \ldots, w_{M}\right)$ is in general not a path, as the vertices are not guaranteed to be disjoint.
- If $a \in q$, then a and c are trivially connected. Indeed, a subpath $q^{\prime}=\left(w_{k}, \ldots\right.$, w_{M}) already exists in q such that $w_{K}=a$ and $w_{M}=c$.
- If $\neg(a \in q)$, then let $v_{K}=w_{H}$ be the first element of p that is also in q. Since v_{N} $=w_{1}=b, v_{K}$ is guaranteed to exist.
- By definition, v_{1}, \ldots, v_{K-1} are not in q. Therefore, $r=\left(v_{1}, \ldots, v_{K}, w_{H+1}, \ldots, w_{M}\right)$ is a path.
- Since r begins in a and ends in c, a and c are connected.

Exercise 3 (connectivity)

Write a procedure (pseudocode or any programming language) that inputs an undirected graph $G=(V, E)$ and outputs true if and only if the G is connected.

Exercise 3 (solution)

We start by noting that, since connectivity is symmetric and transitive, we only need to check if any node is connected to every other. We can implement the following algorithm:

- Pick any vertex v from V. Initialize a frontier set $F=\{v\}$. Initialize an interior set $I=\varnothing$.
- Until F is empty:
- Pick an element f from F. Remove f from F, add f to I.
- For every neighbor n of f.
- If $\urcorner(n \in F \cup I)$, add n to F.
- If $I=V$, then G is connected.

Let w be any vertex, if and only if path exists between v and w, then w is eventually added to F, then removed from F and added to I. If eventually $I=V$, then every vertex is connected to v, and consequently G is connected.

Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m

Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m.
- b and d receive m .

Gossip

We use an undirected graph to represent which processes can communicate. Upon receiving a new message m, a process forwards m to all its neighbors.

Example: diffusion of a message m from process e.

- e issues m.
- b and d receive m .
- a and c receive m.

Gossip is correct if and only if, if the sender is correct, every correct process eventually receives the message.

Exercise 4 (gossip)

Prove that gossip is correct if and only if the subgraph of correct processes is connected.

Note: prove both directions of the implication!

Exercise 4 (solution)

If the subgraph of correct processes is connected, then gossip is correct.
Let $G=(V, E)$ be the gossip network, let $N=|V|$, let s be the sender. By induction:

- Let s be the sender. We obviously have that s eventually delivers the message m.
- Let V_{L} denote the set of vertices that are connected to s by a path no longer than L. We have $V_{0}=\{s\}$.
- Let N_{L} denote the set of vertices that have at least one neighbor in V_{L}. If every process in V_{L} eventually delivers m, then also every process in N_{L} delivers m (as m is sent to every neighbor).
- Since $N_{L} \cup V_{L}=V_{L+1}$, if every process in V_{L} eventually delivers m then every process in V_{L+1} eventually delivers m.
- Since all the vertices in a path are distinct, no path longer than N can exist on the gossip path. Therefore, $V=V_{N}$ Consequently, every node in V eventually delivers m.

Exercise 4 (solution)

If gossip is correct, then the subgraph of correct processes is connected.
Let $G=(V, E)$ be the gossip network, let $N=|V|$, let s be the sender.

- Let $v \neq s$ be a correct process. Regardless of the crashes, v eventually delivers m. Therefore, v eventually receives m from a correct process.
- We use induction similarly to the previous slide, defining W_{L} as the set of processes that are connected to v by a path not longer than L.
- Let $i \in[0, N]$. If W_{i} includes s, then v is connected to s.
- If W_{i} does not include s, then at least one process in W_{i} eventually receives m from one of its neighbors, and that neighbor is not in W_{i}.
- Since the size of W_{i} is strictly increasing until W_{i} includes s, we have that W_{N} must include s.
- Since this holds true for every v, every process is connected to s, making the subgraph of correct processes connected.

Exercise 5 (gossip)

In the following system, exactly one process crashes. What is the minimum number of edges we need to add so that gossip is always correct?

Exercise 5 (solution)

In the following system, exactly one process crashes. What is the minimum number of edges we need to add so that gossip is always correct?

k-connectivity

Two paths p, p^{\prime} connecting two vertices a and z are disjoint if they have no vertex in common, except a and z :

$$
\begin{gathered}
p=(a, b, \ldots, y, z) \\
p^{\prime}=\left(a, b^{\prime}, \ldots, y^{\prime}, z\right) \\
\{a, b, \ldots, y, z\} \cap\left\{a, b^{\prime}, \ldots, y^{\prime}, z\right\}=\{a, z\}
\end{gathered}
$$

A graph is \boldsymbol{k}-connected if and only if k disjoint paths exist between any two vertices of the graph.

Robustness

Gossip is robust to k failures if and only if it is always correct, as long as no more than k nodes are crashed.

A fully connected gossip graph is robust to N failures, where N is the number of processes.

Exercise 6 (robustness)

Prove that, if the gossip graph is $(k+1)$-connected, then gossip is k-robust.
Is the converse also true? Find a counterexample if not.

Exercise 6 (solution)

- By contradiction, let us assume that gossip is $(k+1)$-connected, but k processes exist such that, if they all crash, then two correct processes a and b are no longer connected.
- By hypothesis, $(k+1)$ distinct paths p_{1}, \ldots, p_{k+1} exist between a and b.
- If some i exists such that no process crashes in p_{i}, then a and b are still connected by correct processes, and (as we proved in Exercise 4) they can gossip with each other.
- Since p_{1}, \ldots, p_{k+1} are all distinct, at least one distinct process must crash in each p_{i} for a and b to be disconnected. But at most k processes can crash!

Exercise 6 (solution)

Technically:

But does it still work for $N>2$?

Random failures

Suppose that processes can fail independently with probability f.
What is the probability that two correct processes can communicate in the presence of failures?

It depends on their connectivity!
e.g.

Probability of failure f
α, β can communicate iff x has not failed =>
α, β communicate with probability 1-f.

Exercise 7 (random failures on series topology)

Suppose that processes $x_{i}, i=1, \ldots, n$ can fail independently with probability f. What is the probability that a and b can communicate?

Exercise 7 (solution)

- Each process survives (i.e., it does not fail) with independent probability ($1-f$).
- Therefore, all processes survive with probability $(1-f)^{n}$.

Exercise 8 (random failures on parallel topology)

Suppose that processes $x_{i}, i=1, \ldots, n$ can fail independently with probability f. What is the probability that a and b can communicate?

Exercise 8 (solution)

- Each process fails with independent probability f.
- Therefore, all processes fail with probability f^{n}.
- Finally, at least one process survives with probability (1-f ${ }^{n}$).

Exercise 9 (random failures on series/parallel topology)

Suppose that processes $x_{i j}, i=1, \ldots, n, j=1, \ldots, m$ can fail independently with probability f.

Prove that a and b can communicate with probability $1-\left[1-(1-f)^{m}\right]^{n}$.

Exercise 9 (solution)

- As we proved in Exercise 7, every branch fails with independent probability $g=1-(1-f)^{m}$.
- We can now consider each branch as if it was one of the processes in Exercise 8. The probability that no branch fails is $1-g^{n}=1-\left[1-(1-f)^{m}\right]^{n}$.

Erdös-Renyi graphs

An Erdös-Renyi graph $G(N, p)$ is a random undirected graph with N vertices, such that any two distinct vertices have an independent probability p of being adjacent.

Example graph

$$
\mathrm{G}(4,1 / 2)
$$

An Erdös-Renyi graph is defined by the values of $N(N-1) / 2$ independent Bernoulli random variables:

$$
\begin{gathered}
E_{i j} \sim \operatorname{Bernoulli}(p) \\
E_{i j}=E_{j i}
\end{gathered}
$$

with $i, j \in V$. Vertices i and j are adjacent iff $E_{i j}=1$.

Bonus Exercise 10 (Erdös-Renyi graphs)

What distribution underlies the number of edges in an Erdös-Renyi $G(N, p)$? What distribution underlies the degree (i.e., number of links) of any vertex? Are the degrees of any two vertices independently distributed?

Connectivity of $G(N, p)$

Let $C(N, p)$ denote the probability of a random graph $G(N, p)$ being connected. It is possible to prove that:

$$
\begin{array}{ll}
\lim [N \rightarrow \infty] G(N, p)=0 & \text { iff } p<\ln (N) / N \\
\lim [N \rightarrow \infty] G(N, p)=1 & \text { iff } p>\ln (N) / N
\end{array}
$$

A large Erdös-Renyi graph is almost surely connected, as long as each vertex has an expected degree larger than $\ln (N)$.

We can use Erdös-Renyi graphs to build probabilistic gossip with logarithmic communication complexity!

Bonus Exercise 11 (Erdös-Renyi graphs)

Write a distributed procedure that runs on N processes to build an Erdös-Renyi graph $G(N, \operatorname{In}(N) / N)$. We assume no failures. Each process can invoke:

- A procedure $\operatorname{rand}(x)$ that returns a real number between 0 and x, independently picked with uniform probability.
- A procedure connect(i) to connect to the i-th process.

Is it possible for the procedure to have $O(\ln (N))$ computation complexity?

