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Group Membership

• In many distributed applications, processes need to 
know which processes are participating in the 
computation and which are not

• Failure detectors provide such information; however, 
that information is not coordinated (see next slide) 
even if the failure detector is perfect
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Group Membership

• To illustrate the concept, we focus here on a  
group membership abstraction to coordinate the 
information about crashes

• In general, a group membership abstraction can 
also typically be used to coordinate the 
processes joinning and leaving explicitly the 
set of processes (i.e., without crashes) 
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Group Membership

• Like with a failure detector, the processes are 
informed about failures; we say that the processes 
install views

• Like with a perfect failure detector, the processes 
have accurate knowledge about failures  

• Unlike with a perfect failure detector, the 
information about failures are coordinated: the 
processes install the same sequence of views
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Group Membership

Memb1. Local Monotonicity: If a process installs view 
(j,M) after installing (k,N), then j > k and M < N  

Memb2. Agreement: No two processes install views 
(j,M) and (j,M’) such that M ≠ M’  

Memb3. Completeness: If a process p crashes, then 
there is an integer j such that  every correct process 
eventually installs view (j,M) such that p Ï M  

Memb4. Accuracy: If some process installs a view (i,M) 
and p Ï M, then p has crashed  
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Group Membership
Events

Indication: <membView, V>

• Properties:
• Memb1, Memb2, Memb3, Memb4
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Algorithm (gmp)
Implements: groupMembership (gmp).
Uses: 

PerfectFailureDetector (P).
UniformConsensus(Ucons).

upon event < Init > do
view := (0,S); 
correct := S;
wait := true; 
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Algorithm (gmp – cont’d)

upon event < crash, pi > do
correct := correct \ {pi};

• upon event (correct < view.memb) and  (wait = 
false) do
• wait := true;
• trigger<ucPropose,(view.id+1,correct) >;
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Algorithm  (gmp – cont’d)

• upon event < ucDecided, (id, memb)> do
• view := (id, memb);
• wait := false;
• trigger < membView, view>;
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Group Membership and Broadcast
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• View synchronous broadcast is an abstraction that 
results from the combination of group membership 
and reliable broadcast 

• View synchronous broadcast ensures that the 
delivery of messages is coordinated with the 
installation of views     

View Synchrony
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View Synchrony 

Besides the properties of group membership 
(Memb1-Memb4) and reliable broadcast 
(RB1-RB4), the following property is ensured:

VS: A message is vsDelivered in the view where it 
is vsBroadcast
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Events
Request: 

<vsBroadcast, m>

• Indication: 
• <vsDeliver, src, m>
• <vsView, V>

View Synchrony 
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View Synchrony 

If the application keeps vsBroadcasting messages, the 
view synchrony abstraction might never be able to 
vsInstall a new view; the abstraction would be 
impossible to implement

We introduce a specific event for the abstraction to 
block the application from vsBroadcasting
messages;  this only happens when a process crashes   



19

Events
Request: 

<vsBroadcast, m>; <vsBlock, ok> 
Indication: 

<vsDeliver, src, m>; <vsView, V>; <vsBlock>

View Synchrony
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Algorithm (vsc)

Implements: ViewSynchrony (vs).

Uses: 
GroupMembership (gmp).
TerminatingReliableBroadcast(trb).
BestEffortBroadcast(beb).
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upon event < Init > do

view := (0,S); nextView := ^;

pending := delivered := trbDone := Æ;
flushing := blocked := false;

Algorithm (vsc – cont’d)
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Algorithm (vsc – cont’d)

upon event <vsBroadcast,m> and  (blocked = false) 
do

delivered := delivered È í m ý;
trigger <vsDeliver, self, m>;
trigger <bebBroadcast, [Data,view.id,m>;
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Algorithm (vsc – cont’d)

upon event<bebDeliver,src,[Data,vid,m]) do
If(view.id = vid) and (m Ï delivered) and 
(blocked = false) then 

delivered :=  delivered È í m ý
trigger <vsDeliver, src, m >;
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upon event < membView, V > do
addtoTail (pending, V);

Algorithm (vsc – cont’d)

upon (pending ≠ Æ) and (flushing = false) do
nextView := removeFromhead (pending);
flushing := true; 
trigger <vsBlock>;
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Algorithm (vsc – cont’d)

Upon <vsBlockOk> do
blocked := true;
trbDone := Æ;

trigger <trbBroadcast, self, (view.id,delivered)>;
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Algorithm (vsc – cont’d)

Upon <trbDeliver, p, (vid, del)> do
trbDone := trbDone È ípý;
forall m Î del and m Ï delivered do

delivered := delivered È í m ý;

trigger <vsDeliver, src, m >;
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Upon (trbDone = view.memb) and (blocked = true) do
view := nextView;
flushing := blocked := false; 
delivered := Æ;

trigger <vsView, view>;

Algorithm (vsc – cont’d)
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Consensus-Based View 
Synchrony 

Instead of launching parallel instances of TRBs, plus a 
group membership, we use one consensus instance 
and parallel broadcasts for every view change

Roughly, the processes exchange the messages they 
have delivered when they detect a failure, and use 
consensus to agree on the membership and the 
message set  
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Algorithm 2 (vsc)

Implements: ViewSynchrony (vs).

Uses: 
UniformConsensus (uc).
BestEffortBroadcast(beb).
PerfectFailureDetector(P).
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upon event < Init > do

view := (0,S); 
correct := S; 
flushing := blocked := false;
delivered := dset := Æ;

Algorithm 2 (vsc – cont’d)
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Algorithm 2 (vsc – cont’d)

upon event <vsBroadcast,m) and  (blocked = false) do
delivered := delivered È í m ý

trigger <vsDeliver, self,m>;
trigger <bebBroadcast,[Data,view.id,m] >;
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Algorithm 2  (vsc – cont’d)

upon event<bebDeliver,src,[Data,vid,m]) do
if (view.id = vid) and (m Ï delivered) and (blocked 
= false) then

delivered :=  delivered È í m ý;
trigger <vsDeliver, src, m >;
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upon event < crash, p > do
correct := correct \ í p ý;
if flushing = false then

flushing := true;
trigger <vsBlock>;

Algorithm 2  (vsc – cont’d)
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Algorithm 2  (vsc – cont’d)

Upon <vsBlockOk> do
blocked := true;

trigger <bebBroadcast, [DSET,view.id,delivered] >;
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Algorithm 2  (vsc – cont’d)

Upon <bebDeliver, src, [DSET,vid,del]> do
dset:= dset È (src,del);
if forall p Î correct, (p,mset) Î dset  then

trigger <ucPropose, view.id+1, correct, dset >;
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Algorithm 2  (vsc – cont’d)
Upon <ucDecided, id, memb, vsdset > do

forall (p,mset) Î vsdset: p Îmemb  do
forall (src,m) Î mset: m Ï delivered do

delivered :=  delivered È ímý

trigger <vsDeliver, src, m>;

view := (id, memb); flushing := blocked := 
false; dset := delivered := Æ;

trigger <vsView, view>;
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Uniform View Synchrony

We now combine the properties of 
group membership (Memb1-Memb4) –
which is already uniform

uniform reliable broadcast (RB1-RB4) –

VS: A message is vsDelivered in the view
where it is vsBroadcast – which is already
uniform
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Uniform View Synchrony 

Using uniform reliable broadcast instead of best 
effort broadcast in the previous algorithms does 
not ensure the uniformity of the message delivery 
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upon event < Init > do

view := (0,S); 
correct := S; 
flushing := blocked := false;
udelivered := delivered := dset := Æ;
for all m: ack(m) := Æ;

Algorithm 3 (uvsc)
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Algorithm 3 (uvsc – cont’d)

upon event <vsBroadcast,m) and  (blocked = false) 
do

delivered := delivered È ímý;
trigger <bebBroadcast,[Data,view.id,m] >;
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Algorithm 3 (uvsc – cont’d)

upon event<bebDeliver,src,[Data,vid,m]) do
if (view.id = vid) then

ack(m) := ack(m) È ísrcý;
if m Ï delivered then

delivered := delivered È í m ý
trigger <bebBroadcast, [Data,view.id,m] >;
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Algorithm 3 (uvsc – cont’d)
upon event (view ≤ ack(m)) and (m Ï udelivered)  
do

udelivered := udelivered È í m ý
trigger <vsDeliver, src(m), m >;
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upon event < crash, p > do
correct := correct \ í p ý;
if flushing = false then

flushing := true;
trigger <vsBlock>;

Algorithm 3  (uvsc – cont’d)
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Algorithm 3  (uvsc – cont’d)
Upon <vsBlockOk> do

blocked := true;
trigger <bebBroadcast, 
[DSET,view.id,delivered] >;

Upon <bebDeliver, src, [DSET,vid,del]> do
dset:= dset È (src,del);
if forall p Î correct, (p,mset) Î dset  

then trigger <ucPropose, view.id+1, 
correct, dset >;
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Algorithm 3  (uvsc – cont’d)
Upon <ucDecided, id, memb, vsdset > do

forall (p,mset) Î vs-dset: p Îmemb  do
forall (src,m) Î mset: m Ï udelivered do

udelivered :=  udelivered È ímý

trigger <vsDeliver, src, m>;

view := (id, memb); flushing := blocked := 
false; dset := delivered := udelivered := Æ;

trigger <vsView, view>;


