# Distributed Algorithms

## Logic 101 1st exercise session, 23/09/2019

Matteo Monti <<u>matteo.monti@epfl.ch</u>> Athanasios Xygkis <<u>athanasios.xygkis@epfl.ch</u>>

# Example 1 (Conditional statements)

Write the converse, contrapositive and inverse of the following sentence:

"If process x fails, then process y never receives message m"

Reminder:

Let P be the proposition  $p \rightarrow q$ :

- The *converse* of P is:  $q \rightarrow p$ :
- The inverse of P is:  $\neg p \rightarrow \neg q$
- The contrapositive of P is:  $\neg q \rightarrow \neg p$

Notes:

- Only the contrapositive of a conditional statement is equivalent to it.
- The proposition "p iff q" means that both P and the converse of P are true.

# Exercise 1 (Conditional statements)

Write the negation of the following sentence:

"If process x fails, then process y never receives message m"

Reminder:

#### Hints:

Let P be a proposition. The negation of P is  $\neg$ P ("not P"). For example:

- ¬"7 is odd" = "7 is not odd" = "7 is even" (if you prove it!)
- ¬"All cats are animals" = "Some cats are not animals"

- The negation of  $\neg p \rightarrow \neg q$  is *not*  $p \rightarrow \neg q$ .
- Express the implication in terms of *and* and *or* expressions.

### Example 2

If the following statement is true:

If process i fails, then instantly all processes j≠i fail

Which of the following are also true?

- 1. If a process  $j \neq i$  fails, then process i has failed,
- 2. If a process j≠i fails, nothing can be said about process i,
- 3. If a process  $j \neq i$  fails, then process i has not failed,

(continues on next slide)

## Example 2 (contd)

- 4. If no process j≠i fails, nothing can be said about process i,
- 5. If no process  $j \neq i$  fails, then process i has failed,
- 6. If no process  $j \neq i$  fails, then process i has not failed,
- 7. If all processes  $j \neq i$  fail, then process i has failed,
- 8. If all processes  $j \neq i$  fail, nothing can be said about process i,
- 9. If all processes  $j \neq i$  fail, then process i has not failed,
- 10. If some process j≠i does not fail, nothing can be said about process i,
- 11. If some process  $j \neq i$  does not fail, then process i has failed,
- 12. If some process  $j \neq i$  does not fail, then process i has not failed.

#### Exercise 2

#### Replace "instantly" with "eventually" in Example 2.

## Example 3 (Proof by cases)

Let x, y, z, q be natural numbers such that

$$x^2 + 5 y^2 + 5z^2 = q^2$$

Prove that q is even if and only if all x, y, and z are even as well.

#### Exercise 3 (Proof by cases)

Prove that  $x + |x - 7| \ge 7$ 

#### Example 4 (Proof by contradiction)

Prove that the set of prime numbers is infinite.

#### Exercise 4 (Proof by contradiction)

Prove that if  $\alpha^2$  is even,  $\alpha$  is even.

# Bonus Exercise 4 (Proof by contradiction)

Prove that  $\sqrt{2}$  is irrational.

Hint: Use the result of exercise 4

*Proof by contradiction:* 

Hints:

- In order to prove *p*, find a contradiction *q* such that ¬*p* → *q* is true.
- A contradiction always has the form:  $q \equiv r \land \neg r$ .

- Use the result of Exercise 3.
- A rational number is always in the form r/q, where r is integer, q is natural, and r and q have no common divisor.

# Example 5 (proof by induction)

Let a swiss chocolate of rectangular shape mxn. What is the smallest number of *cuts* we need to do, in order to break up the chocolate in individual pieces of size 1x1?

e.g.

A cut is defined as any line that:

- 1. Does not cross itself,
- 2. Starts and ends on the perimeter of the chocolate piece it cuts.

*Note*: You cannot consider a cut on two pieces as a single cut, just because these pieces are next to each other.



# Exercise 5 (proof by induction)

A chessboard of size  $2^{n}x2^{n}$  ( $n \ge 0$ ) has all of its squares painted white, except for one arbitrary square, which is painted black.

Prove that for every  $n \ge 0$ , you can cover all the white squares of the chessboard with L-shaped non-overlapping tiles.









L-shaped tile

n = 2

# Bonus Exercise 5 (proof by induction)

Consider a country with  $n \ge 2$  cities. For every pair of different cities *x*, *y*, there exists a direct route (single direction) either from *x* to *y* or from *y* to *x*. Show that there exists a city that we can reach from every other city either directly or through exactly one intermediate city.