Distributed Algorithms

Fall 2019

Logic 101
 1st exercise session, 23/09/2019

Matteo Monti matteo.monti@epfl.ch
Athanasios Xygkis athanasios.xygkis@epfl.ch

Example 1 (Conditional statements)

Write the converse, contrapositive and inverse of the following sentence:
"If process x fails, then process y never receives message m"

Reminder:

Let P be the proposition $\mathrm{p} \rightarrow \mathrm{q}$:

- The converse of P is: $q \rightarrow p$:
- The inverse of P is: $\neg p \rightarrow \neg q$
- The contrapositive of P is: $\neg q \rightarrow \neg p$

Notes:

- Only the contrapositive of a conditional statement is equivalent to it.
- The proposition "p iff q" means that both P and the converse of P are true.

Exercise 1 (Conditional statements)

Write the negation of the following sentence:
"If process x fails, then process y never receives message m"

Reminder:
Let P be a proposition. The negation of P is $\neg P$ ("not P "). For example:

- \quad " 7 is odd" $=$ " 7 is not odd" $=$ " 7 is even" (if you prove it!)
- \quad "All cats are animals" = "Some cats are not animals"

Hints:

- The negation of $\neg p \rightarrow \neg q$ is not $p \rightarrow$ $\neg \mathrm{q}$.
- Express the implication in terms of and and or expressions.

Example 2

If the following statement is true:
If process i fails, then instantly all processes jキi fail

Which of the following are also true?

1. If a process $j \neq i$ fails, then process i has failed,
2. If a process $j \neq i$ fails, nothing can be said about process i,
3. If a process $j \neq i$ fails, then process i has not fai led,
(continues on next slide)

Example 2 (contd)

4. If no process $j \neq i$ fails, nothing can be said about process i,
5. If no process $j \neq i$ fails, then process i has failed,
6. If no process $j \neq i$ fails, then process i has not failed,
7. If all processes $j \neq i$ fail, then process i has failed,
8. If all processes $\mathrm{j} \neq \mathrm{i}$ fail, nothing can be said about process i ,
9. If all processes $j \neq i$ fail, then process i has not failed,
10. If some process $j \neq i$ does not fail, nothing can be said about process i,
11. If some process $j \neq i$ does not fail, then process i has failed,
12. If some process $j \neq i$ does not fail, then process i has not failed.

Exercise 2

Replace "instantly" with "eventually" in Example 2.

Exercise 2 (solution)

1. False: Some process j can fail for a reason not related to the failure of process i .
2. True: explanation in (1).
3. False: explanation in (1).
4. True: Because of "eventually".
5. False.
6. False: Because of "eventually".
7. False.
8. True: Nothing can be said about process i.
9. False.
10. True: Nothing can be said about process i, because of "eventually".
11. False.
12. False: Nothing can be said about process i, because of "eventually".

Example 3 (Proof by cases)

Let x, y, z, q be natural numbers such that

$$
x^{2}+5 y^{2}+5 z^{2}=q^{2}
$$

Prove that q is even if and only if all of x, y, and z are even as well.

Exercise 3 (Proof by cases)

Prove that $x+|x-7| \geq 7$

Exercise 3 (solution)

For the set of real numbers, we know that:

- $|a|=-a$, if $a<0$
- $|a|=a$, if $a \geq 0$

So:

- If $x<7$: $|x-7|=7-x$, therefore $x+|x-7|=x+(7-x)=7 \geq 7$
- If $x \geq 7:|x-7|=x-7$, therefore $x+|x-7|=x+(x-7)=2 x-7 \geq 2^{*} 7-7 \rightarrow x+$ $|x-7| \geq 7$

Example 4 (Proof by contradiction)

Prove that the set of prime numbers is infinite.

Exercise 4 (Proof by contradiction)

Prove that if α^{2} is even, α is even.

Exercise 4 (solution)

When we want to prove something by contradiction, we start by assuming that the negation (of whatever we are trying to prove) is true.

We said in the classroom that $p \rightarrow q$ is equivalent to $\neg p \vee q$. Therefore the negation of $p \rightarrow q$ is $p \wedge \neg q$.

With that said, let's assume that a^{2} is even and a is odd. Since a is odd, a can be written as $a=2 k+1$. Therefore, $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$. Thus, a^{2} is odd, a contradiction!

Bonus Exercise 4 (Proof by contradiction)

Prove that $\sqrt{ } 2$ is irrational.
Hint: Use the result of exercise 4

Proof by contradiction:

- In order to prove p, find a contradiction q such that $\neg p \rightarrow$ q is true.
- A contradiction always has the form: $q \equiv r \wedge \neg r$.

Hints:

- Use the result of Exercise 3.
- A rational number is always in the form r / q, where r is integer, q is natural, and r and q have no common divisor.

Exercise 4 (Solution)

- Assume that $\sqrt{ } 2$ is rational, i.e. $\sqrt{ } 2=a / b$ where a, b are coprime (have no common divisors).
- We square both sides, thus $2=a^{2} / b^{2} \rightarrow a^{2}=2 b^{2}$.
- Therefore, a^{2} is even, and using the result of the previous exercise we know that a is even.
- Since a is even, it has the form $a=2 k$. We substitute this in the previous equation and we have that:
- $(2 k)^{2}=2 b^{2} \rightarrow 4 k^{2}=2 b^{2} \rightarrow b^{2}=2 k^{2}$.
- Since $b^{2}=2 k^{2}$, this means that b^{2} is even $\rightarrow b$ is even, which is a contradiction!
- The contradiction is that we assumed a, b to be coprime, but we concluded that both are even!

Example 5 (proof by induction)

Let a swiss chocolate of rectangular shape $m \times n$. What is the smallest number of cuts we need to do, in order to break up the chocolate in individual pieces of size 1×1 ?

A cut is defined as any line that:

1. Does not cross itself,
2. Starts and ends on the perimeter of the chocolate piece it cuts.

Note: You cannot consider a cut on two pieces as a single cut, just because these
e.g. pieces are next to each other.

Exercise 5 (proof by induction)

A chessboard of size $2^{n} \times 2^{n}(n \geq 0)$ has all of its squares painted white, except for one arbitrary square, which is painted black.

Prove that for every $n \geq 0$, you can cover all the white squares of the chessboard with L-shaped non-overlapping tiles.
e.g. $\quad{ }_{n=0}$

$$
n=0
$$

$$
n=2
$$

L-shaped tile

Exercise 5 (solution 1/2)

We will use induction:

- Base case ($\mathrm{n}=0$): We can tile one black square, using 0 L-shaped tiles.
- Inductive step: Suppose this property holds for $\mathrm{n} \geq 0$:
- i.e., we can tile a $2^{n} x 2^{n}$ grid using L-shaped tiles, leaving a single square uncovered (the black square) at an arbitrary location. We will show how to tile a $2^{n+1} x 2^{n+1}$ grid.

Exercise 5 (solution 2/2)

Suppose the grid has size $2^{n+1} \times 2^{n+1}$ (we show a grid for $\mathrm{n}=3$) and the black square is somewhere in the grid.

We can tile each sub-grid because of the inductive

For the three squares in the middle, we can step. For the top-left sub-griduse an L-shaped tile, we leave the green square uncovered. We also leave the blue and the red squares uncovered in their corresponding sub-grids.

Bonus Exercise 5 (proof by induction)

Consider a country with $n \geq 2$ cities. For every pair of different cities x, y, there exists a direct route (single direction) either from x to y or from y to x. Show that there exists a city that we can reach from every other city either directly or through exactly one intermediate city.

Exercise 5 (solution 1/2)

We name "central" the a city that we can reach from every other city either directly or through exactly one intermediate city.

Base case ($\mathrm{n}=2$): It obviously holds. Either one of the cities is "central".
Inductive step: Suppose this property holds for $\mathrm{n} \geq 2$ cities. We will prove that it will still hold for $\mathrm{n}+1$ cities.

Exercise 5 (solution 2/2)

Let $\mathrm{n}+1$ cities, $\mathrm{c}_{\mathrm{i}}, \mathrm{i}=0, \ldots, \mathrm{n}$, where for every pair of different cities c_{j}, c_{j}, there exists a direct route (single direction) either from c_{i} to c_{j} or from c_{j} to c_{i}

We consider only the first n cities, i.e. cities $c_{i}, i=0, \ldots, n-1$. According to the inductive step, there exists one central city among these n cities. Let c_{j} be that city.

We now exclude city c_{j} and consider the rest of the cities. Again, we have n cities, therefore there should exist one city among them that is central. Let c_{k} be that city.

All cities apart from c_{j} and c_{k} can reach c_{j} and c_{k} either directly or through one intermediate city.
Furthermore, there exists a route between c_{j} and c_{k} :

- If the route is directed from c_{j} to c_{k}, then c_{k} is the central city for the $n+1$ cities.
- If the route is directed from c_{k} to c_{j}, then c_{j} is the central city for the $n+1$ cities.

