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Example 1 (Conditional statements)
Write the converse, contrapositive and inverse of the following sentence:

“If process x fails, then process y never receives message m”

Reminder:

Let P be the proposition p→q:

● The converse of P is: q→p:
● The inverse of P is: ¬p → ¬q
● The contrapositive of P is: ¬q → ¬p

Notes: 

● Only the contrapositive of a conditional 
statement is equivalent to it.

● The proposition “p iff q” means that 
both P and the converse of P are true.



Hints: 

● The negation of ¬p → ¬q is not p → 
¬q.

● Express the implication in terms of and 
and or expressions.

Exercise 1 (Conditional statements)
Write the negation of the following sentence:

“If process x fails, then process y never receives message m”

Reminder:

Let P be a proposition. The negation of 
P is ¬P (“not P”). For example:

● ¬“7 is odd” = “7 is not odd” = “7 is 
even” (if you prove it!)

● ¬“All cats are animals” = “Some 
cats are not animals”



Example 2
If the following statement is true:

If process i fails, then instantly all processes j≠i fail

Which of the following are also true?

1. If a process j≠i fails, then process i has failed,
2. If a process j≠i fails, nothing can be said about process i,
3. If a process j≠i fails, then process i has not fai

led,

(continues on next slide)



Example 2 (contd)
4. If no process j≠i fails, nothing can be said about process i,
5. If no process j≠i fails, then process i has failed,
6. If no process j≠i fails, then process i has not failed,
7. If all processes j≠i fail, then process i has failed,
8. If all processes j≠i fail, nothing can be said about process i,
9. If all processes j≠i fail, then process i has not failed,

10. If some process j≠i does not fail, nothing can be said about process i,
11. If some process j≠i does not fail, then process i has failed,
12. If some process j≠i does not fail, then process i has not failed.



Exercise 2

Replace “instantly” with “eventually” in Example 2.



Exercise 2 (solution)
1. False: Some process j can fail for a reason not related to the failure of  process i.
2. True: explanation in (1).
3. False: explanation in (1).
4. True: Because of “eventually”.
5. False.
6. False: Because of “eventually”.
7. False.
8. True: Nothing can be said about process i.
9. False.

10. True: Nothing can be said about process i, because of “eventually”.
11. False.
12. False: Nothing can be said about process i, because of “eventually”.



Example 3 (Proof by cases)

Let x, y, z, q be natural numbers such that

x2 + 5y2 + 5z2 = q2

Prove that q is even if and only if all of x, y, and z are even as well.



Exercise 3 (Proof by cases)

Prove that x + |x - 7| ≥ 7



Exercise 3 (solution)
For the set of real numbers, we know that:

● |a| = -a, if a < 0
● |a| = a, if a ≥ 0

So:

● If x < 7: |x - 7| = 7 - x, therefore x + |x - 7| = x + (7 - x) = 7 ≥ 7
● If x ≥ 7: |x - 7| = x - 7, therefore x + |x - 7| = x + (x - 7) = 2x - 7 ≥ 2*7 - 7 → x + 

|x - 7| ≥ 7



Example 4 (Proof by contradiction)

Prove that the set of prime numbers is infinite.



Exercise 4 (Proof by contradiction)

Prove that if α2 is even, α is even.



Exercise 4 (solution)

When we want to prove something by contradiction, we start by assuming that the negation (of whatever 
we are trying to prove) is true.

We said in the classroom that p → q is equivalent to ¬p ∨ q. 
Therefore the negation of p → q is p ∧¬q.

With that said, let's assume that a2 is even and a is odd. Since a is odd, a can be written as a=2k+1. 
Therefore, a2 = (2k+1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Thus, a2 is odd, a contradiction!



Bonus Exercise 4 (Proof by contradiction)

Proof by contradiction:

● In order to prove p, find a 
contradiction q such that ¬p → 
q is true.

● A contradiction always has the 
form: q ≡ r ∧ ¬r.

Prove that √2 is irrational.

Hint: Use the result of exercise 4

Hints:

● Use the result of Exercise 3.
● A rational number is always in 

the form r/q, where r is integer, 
q is natural, and r and q have 
no common divisor.



Exercise 4 (Solution)

● Assume that √2 is rational, i.e. √2 = a/b where a,b are coprime (have no common divisors). 
● We square both sides, thus 2 = a2/b2 → a2 = 2b2.
● Therefore, a2 is even, and using the result of the previous exercise we know that a is even.
● Since a is even, it has the form a=2k. We substitute this in the previous equation and we 

have that:
● (2k)2 = 2b2 → 4k2 = 2b2 → b2 = 2k2.
● Since b2 = 2k2, this means that b2 is even → b is even, which is a contradiction!
● The contradiction is that we assumed a,b to be coprime, but we concluded that both are 

even!



Example 5 (proof by induction)
Let a swiss chocolate of rectangular shape mxn. What is the smallest number of 
cuts we need to do, in order to break up the chocolate in individual pieces of size 
1x1?

A cut is defined as any line that:

1. Does not cross itself,
2. Starts and ends on the perimeter of the chocolate piece it cuts.

Note: You cannot consider a cut on two 
pieces as a single cut, just because these  
pieces are next to each other.

e.g.



Exercise 5 (proof by induction)
A chessboard of size 2nx2n (n ≥ 0) has all of its squares painted white, except for 
one arbitrary square, which is painted black.

Prove that for every n ≥ 0, you can cover all the white squares of the chessboard 
with L-shaped non-overlapping tiles.

n = 0
n = 1

n = 2

e.g.
L-shaped tile



Exercise 5 (solution 1/2)
We will use induction:

● Base case (n=0): We can tile one black square, using 0 L-shaped tiles.
● Inductive step: Suppose this property holds for n ≥ 0:

○ i.e., we can tile a 2nx2n grid using L-shaped tiles, leaving a single square uncovered (the black 
square) at an arbitrary location. We will show how to tile a 2n+1x2n+1 grid.



Exercise 5 (solution 2/2)

Suppose the grid has size 
2n+1x2n+1 (we show a grid 
for n=3) and the black 
square is somewhere in the 
grid.

We split the 2n+1x2n+1 grid in 
4 sub-grids of size 2nx2n.

We can tile each sub-grid 
because of the inductive 
step. For the top-left sub-grid 
we leave the green square 
uncovered. We also leave 
the blue and the red squares 
uncovered in their 
corresponding sub-grids.

For the three squares 
in the middle, we can 
use an L-shaped tile.



Bonus Exercise 5 (proof by induction)
Consider a country with n ≥ 2 cities. For every pair of different cities x, y, there 
exists a direct route (single direction) either from x to y or from y to x. Show that 
there exists a city that we can reach from every other city either directly or through 
exactly one intermediate city.



Exercise 5 (solution 1/2)
We name “central” the a city that we can reach from every other city either directly 
or through exactly one intermediate city.

Base case (n=2): It obviously holds. Either one of the cities is “central”.

Inductive step: Suppose this property holds for n ≥ 2 cities. We will prove that it will 
still hold for n+1 cities.



Exercise 5 (solution 2/2)

Let n+1 cities, ci, i=0, …, n, where for every pair of different cities ci, cj, there exists a direct route 
(single direction) either from ci to cj or from cj to ci.

We consider only the first n cities, i.e. cities ci, i=0, …, n-1. According to the inductive step, there 
exists one central city among these n cities. Let cj be that city.

We now exclude city cj and consider the rest of the cities. Again, we have n cities, therefore there 
should exist one city among them that is central. Let ck be that city. 

All cities apart from cj and ck can reach cj and ck either directly or through one intermediate city. 

Furthermore, there exists a route between cj and ck:
● If the route is directed from cj to ck, then ck is the central city for the n+1 cities.
● If the route is directed from ck to cj, then cj is the central city for the n+1 cities.


