Distributed Algorithms

Logic 101 1st exercise session, 23/09/2019

Matteo Monti <<u>matteo.monti@epfl.ch</u>> Athanasios Xygkis <<u>athanasios.xygkis@epfl.ch</u>>

Example 1 (Conditional statements)

Write the converse, contrapositive and inverse of the following sentence:

"If process x fails, then process y never receives message m"

Reminder:

Let P be the proposition $p \rightarrow q$:

- The *converse* of P is: $q \rightarrow p$:
- The inverse of P is: $\neg p \rightarrow \neg q$
- The contrapositive of P is: $\neg q \rightarrow \neg p$

Notes:

- Only the contrapositive of a conditional statement is equivalent to it.
- The proposition "p iff q" means that both P and the converse of P are true.

Exercise 1 (Conditional statements)

Write the negation of the following sentence:

"If process x fails, then process y never receives message m"

Reminder:

Hints:

Let P be a proposition. The negation of P is \neg P ("not P"). For example:

- ¬"7 is odd" = "7 is not odd" = "7 is even" (if you prove it!)
- ¬"All cats are animals" = "Some cats are not animals"

- The negation of $\neg p \rightarrow \neg q$ is *not* $p \rightarrow \neg q$.
- Express the implication in terms of *and* and *or* expressions.

Example 2

If the following statement is true:

If process i fails, then instantly all processes j≠i fail

Which of the following are also true?

- 1. If a process $j \neq i$ fails, then process i has failed,
- 2. If a process j≠i fails, nothing can be said about process i,
- If a process j≠i fails, then process i has not fai led,

(continues on next slide)

Example 2 (contd)

- 4. If no process j≠i fails, nothing can be said about process i,
- 5. If no process $j \neq i$ fails, then process i has failed,
- 6. If no process $j \neq i$ fails, then process i has not failed,
- 7. If all processes $j \neq i$ fail, then process i has failed,
- 8. If all processes $j \neq i$ fail, nothing can be said about process i,
- 9. If all processes $j \neq i$ fail, then process i has not failed,
- 10. If some process j≠i does not fail, nothing can be said about process i,
- 11. If some process $j \neq i$ does not fail, then process i has failed,
- 12. If some process $j \neq i$ does not fail, then process i has not failed.

Exercise 2

Replace "instantly" with "eventually" in Example 2.

Exercise 2 (solution)

- 1. False: Some process j can fail for a reason not related to the failure of process i.
- 2. True: explanation in (1).
- 3. False: explanation in (1).
- 4. True: Because of "eventually".
- 5. False.
- 6. False: Because of "eventually".
- 7. False.
- 8. True: Nothing can be said about process i.
- 9. False.
- 10. True: Nothing can be said about process i, because of "eventually".
- 11. False.
- 12. False: Nothing can be said about process i, because of "eventually".

Example 3 (Proof by cases)

Let *x*, *y*, *z*, *q* be natural numbers such that

$$x^2 + 5y^2 + 5z^2 = q^2$$

Prove that *q* is even if and only if all of *x*, *y*, and *z* are even as well.

Exercise 3 (Proof by cases)

Prove that $x + |x - 7| \ge 7$

Exercise 3 (solution)

For the set of real numbers, we know that:

- |a| = -a, if a < 0
- |a| = a, if $a \ge 0$

So:

- If x < 7: |x 7| = 7 x, therefore $x + |x 7| = x + (7 x) = 7 \ge 7$
- If $x \ge 7$: |x 7| = x 7, therefore $x + |x 7| = x + (x 7) = 2x 7 \ge 2^*7 7 \rightarrow x + |x 7| \ge 7$

Example 4 (Proof by contradiction)

Prove that the set of prime numbers is infinite.

Exercise 4 (Proof by contradiction)

Prove that if α^2 is even, α is even.

Exercise 4 (solution)

When we want to prove something by contradiction, we start by assuming that the negation (of whatever we are trying to prove) is true.

We said in the classroom that $p \rightarrow q$ is equivalent to $\neg p \lor q$. Therefore the negation of $p \rightarrow q$ is $p \land \neg q$.

With that said, let's assume that a^2 is even and a is odd. Since a is odd, a can be written as a=2k+1. Therefore, $a^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Thus, a^2 is odd, a contradiction!

Bonus Exercise 4 (Proof by contradiction)

Prove that $\sqrt{2}$ is irrational.

Hint: Use the result of exercise 4

Proof by contradiction:

Hints:

- In order to prove *p*, find a contradiction *q* such that ¬*p* → *q* is true.
- A contradiction always has the form: $q \equiv r \land \neg r$.

- Use the result of Exercise 3.
- A rational number is always in the form r/q, where r is integer, q is natural, and r and q *have no common divisor*.

Exercise 4 (Solution)

- Assume that $\sqrt{2}$ is rational, i.e. $\sqrt{2}$ = a/b where a,b are coprime (have no common divisors).
- We square both sides, thus $2 = a^2/b^2 \rightarrow a^2 = 2b^2$.
- Therefore, a² is even, and using the result of the previous exercise we know that a is even.
- Since a is even, it has the form a=2k. We substitute this in the previous equation and we have that:
- $(2k)^2 = 2b^2 \rightarrow 4k^2 = 2b^2 \rightarrow b^2 = 2k^2$.
- Since $b^2 = 2k^2$, this means that b^2 is even $\rightarrow b$ is even, which is a contradiction!
- The contradiction is that we assumed a,b to be coprime, but we concluded that both are even!

Example 5 (proof by induction)

Let a swiss chocolate of rectangular shape mxn. What is the smallest number of *cuts* we need to do, in order to break up the chocolate in individual pieces of size 1x1?

e.g.

A cut is defined as any line that:

- 1. Does not cross itself,
- 2. Starts and ends on the perimeter of the chocolate piece it cuts.

Note: You cannot consider a cut on two pieces as a single cut, just because these pieces are next to each other.

Exercise 5 (proof by induction)

A chessboard of size $2^{n}x2^{n}$ ($n \ge 0$) has all of its squares painted white, except for one arbitrary square, which is painted black.

Prove that for every $n \ge 0$, you can cover all the white squares of the chessboard with L-shaped non-overlapping tiles.

L-shaped tile

n = 2

Exercise 5 (solution 1/2)

We will use induction:

- Base case (n=0): We can tile one black square, using 0 L-shaped tiles.
- Inductive step: Suppose this property holds for $n \ge 0$:
 - i.e., we can tile a 2ⁿx2ⁿ grid using L-shaped tiles, leaving a single square uncovered (the black square) at an *arbitrary* location. We will show how to tile a 2ⁿ⁺¹x2ⁿ⁺¹ grid.

Exercise 5 (solution 2/2)

Suppose the grid has size $2^{n+1}x2^{n+1}$ (we show a grid for n=3) and the black square is somewhere in the grid.

We split the $2^{n+1}x2^{n+1}$ grid in 4 sub-grids of size 2^nx2^n .

We can tile each sub-grid For the three squares because of the inductive in the middle, we can step. For the top-left sub-griduse an L-shaped tile. we leave the green square uncovered. We also leave the blue and the red squares uncovered in their corresponding sub-grids.

Bonus Exercise 5 (proof by induction)

Consider a country with $n \ge 2$ cities. For every pair of different cities *x*, *y*, there exists a direct route (single direction) either from *x* to *y* or from *y* to *x*. Show that there exists a city that we can reach from every other city either directly or through exactly one intermediate city.

Exercise 5 (solution 1/2)

We name "central" the a city that we can reach from every other city either directly or through exactly one intermediate city.

Base case (n=2): It obviously holds. Either one of the cities is "central".

Inductive step: Suppose this property holds for $n \ge 2$ cities. We will prove that it will still hold for n+1 cities.

Exercise 5 (solution 2/2)

Let n+1 cities, c_i , i=0, ..., n, where for every pair of different cities c_i , c_i , there exists a direct route (single direction) either from c_i to c_j or from c_j to c_j .

We consider only the first n cities, i.e. cities c_i , i=0, ..., n-1. According to the inductive step, there exists one central city among these n cities. Let c_i be that city.

We now exclude city c_j and consider the rest of the cities. Again, we have n cities, therefore there should exist one city among them that is central. Let c_k be that city.

All cities apart from c_i and c_k can reach c_i and c_k either directly or through one intermediate city.

- Furthermore, there exists a route between c_j and c_k:
 If the route is directed from c_j to c_k, then c_k is the central city for the n+1 cities.
 If the route is directed from c_k to c_j, then c_j is the central city for the n+1 cities.