Distributed Systems
Non-Blocking Atomic Commit

Prof R. Guerraoui
Distributed Programming Laboratory

Non-Blocking Atomic Commit:
An Agreement Problem

Transactions (Gray)

e A transaction is an atomic program
describing a sequence of accesses to
shared and distributed information

e A transaction can be terminated either
by committing or aborting

Transactions

"beginTransaction
» Pierre.credit(1.000.000)
» Paul.debit(1.000.000)

- outcome := commitTransaction
- if (outcome = abort) then ...

ACID properties

Atomicity: a transaction either performs entirely or none at all

Consistency: a transaction transforms a consistent state into
another consistent state

Isolation: a transaction appears to be executed in 1solation

Durability: the effects of a transaction that commits are
permanent

The Consistency Contract

(system)
Atomicity (programmer)
Isolation Consistency (local)
Durability

~

Consistency (global)

Distributed Transaction

d

abort-commit (7 A==an

=1
Aortcommit B

bort-commit \\Cj/ /

e S
.ﬁ’

=

/

/

Non-Blocking Atomic Commit

e As in consensus, every process has an initial value 0

(no) or 1 (yes) and must decide on a final value 0
(abort) or 1 (commit)

e The proposition means the ability to commit the
transaction

e The decision reflects the contract with the user

e Unlike consensus, the processes here seek to decide
1 but every process has a veto right

. s

W

Non-Blocking Atohiic Commit

NBAC1. Agreement. No two processes decide
differently

NBAC2. Termination: Every correct process
eventually decides

NBAC3. Commit-Validity: 1 can only be decided if all
processes propose 1

NBAC4. Abort-Validity: 0 can only be decided if
some process crashes or votes 0

'S

\ =

Non-Blocking Atomic Commit

propose(0) decide(0)

p| ———————

propose(1) decide(0)
p2 AI—I—’

propose(0) decide(0)

p3 ‘ ‘

10

¢

| ..

Non-Blocking Atomfc Commit

propose(1) decide(0-1)

p14|—|—>

propose(1)

propose(1) decide(0-1)

p3 ‘ ‘

11

W

2-Phase Commit

propose(1) decide(1)

pl
propose(1)
decide(1)

p2

ropose(1
propose(1) docide(1)

p3

« 5 Q
»

12

pl

p2

p3

propose(1)

propose(1)

propose(1)

N N e

2-Phase Comﬁwit

decide(0)

crash

d

ide(0)

13

. s

W

2-Phase Commit

propose(1)
crash

pl
propose(1)

p2
propose(1)

p3 ‘

14

¢

| ..

Non-Blocking Atomic Commit

Events
Request: <Propose, v>
Indication: <Decide, v'>
e Properties:
e NBAC1, NBAC2, NBAC3, NBAC4

15

» N P .

Algorithm (nbac)

- Implements: nonBlockingAtomicCommit (nbac).

- Uses:

' BestEffortBroadcast (beb).
PerfectFailureDetector (P).

“UniformConsensus (uniCons).

~upon event < Init > do

- prop :=1;
delivered := O; correct := IT;

. N s

Algorithm (nbac — cont'd)

upon event < crash, pi > do
- correct := correct \ {pi}
upon event < Propose, v > do
trigger < bebBroadcast, v>;
“upon event <bebDeliver, pi, v> do
delivered := delivered U {pi};
prop := prop *v;

17

. s

W

Algorithm (nba’c‘ — cont'd)

“upon event correct \ delivered = empty do
If correct = I1

prop := 0;
trigger < uncPropose, prop>;

“upon event < uncDecide, decision> do
trigger < Decide, decision>;

18

) N

« ’ L] =
i

nbac with ucons

propose(1) decide(1)
pl HUCOHS(LI)FI_>
decide(1)
UCons(1,1) F|—>

propose(decide(1)

3
P %UCOHS(LDH_’

19

) N

« ’ L] =
i

nbac with ucons

propose(1)
pl H
crash
propose(1) decide(0)
p? UCons(0,0) }—I—p

propose(1) decide(0)

P> _I—‘UCOHS(0,0)}—I_p

20

« ’ L] =
i

nbac with ucons

propose(1)

1Y

ash

decide(0-1)

Cons(0,0- 1)F|—>

propose(1) decide(0-1)

P> %Uccmsa,o-l)H_.

21

Non-Blocking Atomic Commit

e Do we need perfect failure detector P?
e 1. <>Pis not enough

e 2. P is needed if one process can crash

22

Non-Blocking Atomic Commit

Do we need perfect failure detector P?
e 1. <>P is not enough

e 2. P is needed if one process can crash

23

> » & -
” : N o) < - .
1. Run1
propose(0)
pl H
crash
decide(0)
propose(1)
p
propose(1) decide(0)

p3‘ ‘

24

> » & -
” : N o) < - .
1. Run 2
propose(1)
pl H
crash
decide(0)
propose(1)
p e
propose(1) decide(0)

p3‘ ‘

25

propose(1) - <>P becomes P

pl—I——»

decide(0)
ropose(1)

p2 ‘ g ‘ |
propose(1) decide(0) '

p3‘ ‘

26

Non-Blocking Atomic Commit

e Do we need perfect failure detector P?
e 1. <>Pis not enough

o« 2. Pis needed if one process can crash

27

2. P is needed with one crash

pl =—NBAC(1,1)

suspect(p2)

NBAC(1,0)

p2 == NBAC(1,1)

;msh

suspect(p2)

p3

—NBAC(I,I)—NBAC(I,O)—|—>

28

» » & .

History
e Atomic Commit (Eswaran/Gray 76 — Gray 78)

e NBAC (Skeen 81)
o Complexity of Sync NBAC (DS 83)

e Async NBAC (Had 90 — Gue 95)
e Fast Async NBAC (KD95, GLS95, GL06)

e FD NBAC (DFGHTK 04)
« Optimal NBAC (GW17)

29

