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Non-Blocking Atomic Commit:
An Agreement Problem




Transactions (Gray)

e A transaction is an atomic program
describing a sequence of accesses to
shared and distributed information

e A transaction can be terminated either
by committing or aborting




Transactions

"beginTransaction
» Pierre.credit(1.000.000)
» Paul.debit(1.000.000)

- outcome := commitTransaction
- if (outcome = abort) then ...




ACID properties

Atomicity: a transaction either performs entirely or none at all

Consistency: a transaction transforms a consistent state into
another consistent state

Isolation: a transaction appears to be executed in 1solation

Durability: the effects of a transaction that commits are
permanent




The Consistency Contract

(system)
Atomicity (programmer)
Isolation Consistency (local)
Durability
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Consistency (global)




Distributed Transaction
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Non-Blocking Atomic Commit

e As in consensus, every process has an initial value 0

(no) or 1 (yes) and must decide on a final value 0
(abort) or 1 (commit)

e The proposition means the ability to commit the
transaction

e The decision reflects the contract with the user

e Unlike consensus, the processes here seek to decide
1 but every process has a veto right
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Non-Blocking Atohiic Commit

NBAC1. Agreement. No two processes decide
differently

NBAC2. Termination: Every correct process
eventually decides

NBAC3. Commit-Validity: 1 can only be decided if all
processes propose 1

NBAC4. Abort-Validity: 0 can only be decided if
some process crashes or votes 0
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Non-Blocking Atomic Commit

propose(0) decide(0)
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Non-Blocking Atomfc Commit

propose(1) decide(0-1)
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2-Phase Commit
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2-Phase Comﬁwit
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2-Phase Commit
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Non-Blocking Atomic Commit

Events
Request: <Propose, v>
Indication: <Decide, v'>
e Properties:
e NBAC1, NBAC2, NBAC3, NBAC4
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Algorithm (nbac)

- Implements: nonBlockingAtomicCommit (nbac).

- Uses:

' BestEffortBroadcast (beb).
PerfectFailureDetector (P).

“UniformConsensus (uniCons).

~upon event < Init > do

- prop :=1;
delivered := O; correct := IT;
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Algorithm (nbac — cont'd)

upon event < crash, pi > do
- correct := correct \ {pi}
upon event < Propose, v > do
trigger < bebBroadcast, v>;
“upon event <bebDeliver, pi, v> do
delivered := delivered U {pi};
prop := prop *v;
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Algorithm (nba’c‘ — cont'd)

“upon event correct \ delivered = empty do
If correct = I1

prop := 0;
trigger < uncPropose, prop>;

“upon event < uncDecide, decision> do
trigger < Decide, decision>;
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nbac with ucons
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nbac with ucons

propose(1)
pl H
crash
propose(1) decide(0)
p? UCons(0,0) }—I—p

propose(1) decide(0)
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nbac with ucons

propose(1)
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Non-Blocking Atomic Commit

e Do we need perfect failure detector P?
e 1. <>Pis not enough

e 2. P is needed if one process can crash
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Non-Blocking Atomic Commit

Do we need perfect failure detector P?
e 1. <>P is not enough

e 2. P is needed if one process can crash
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1. Run1
propose(0)
pl H
crash
decide(0)
propose(1)
p
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1. Run 2
propose(1)
pl H
crash
decide(0)
propose(1)
p e
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propose(1) - <>P becomes P
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Non-Blocking Atomic Commit

e Do we need perfect failure detector P?
e 1. <>Pis not enough

o« 2. Pis needed if one process can crash
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2. P is needed with one crash

pl =—NBAC(1,1)

suspect(p2)

NBAC(1,0)

p2 == NBAC(1,1)

;msh

suspect(p2)

p3

—NBAC(I,I)—NBAC(I,O)—|—>
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History
e Atomic Commit (Eswaran/Gray 76 — Gray 78)

e NBAC (Skeen 81)
o Complexity of Sync NBAC (DS 83)

e Async NBAC (Had 90 — Gue 95)
e Fast Async NBAC (KD95, GLS95, GL06)

e FD NBAC (DFGHTK 04)
« Optimal NBAC (GW17)
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