
Lawfulness,
Crime, & Punishment
In Tendermint

Adi Seredinschi
Interchain Foundation

Distributed Algorithms // EPFL Fall’19

Consensus vs.
Blockchain

Consensus: “processes propose values and have to agree
on one among these values” (last week)

○ Benign: crash-stop processes (P, <>P algorithms)
○ Today: Byzantine processes

■ e.g., buggy, malicious & adversarial, rational
■ Authenticated links (dig. sigs. assumption)

Blockchain

● Can mean different things
● Often, the whole stack is the “blockchain”
● Builds on a consensus core -> total order

○ Multiple instances of consensus

Consensus Algorithm

Networking (links,
broadcast)

Application

Tenderm
int

Bl
oc

kc
ha

in
Models:

Roadmap 1. Lawful BFT Consensus Algorithm
Basic Tendermint Consensus

2. Crime & Punishment
Forks

3. Novelties, Open Problems,
& Projects

Lawful Algorithm
Basic Tendermint BFT Consensus

Properties
Validity Predicate-based Byzantine Consensus (Crain et al, 2017)

1. Validity: A decided value is valid, i.e., it satisfies a predicate valid().

2. Agreement: No two correct processes decide differently.

3. Termination: All correct processes eventually decide on a value.

4. Integrity: No correct process decides more than once (w.r.t. a consensus instance).

http://arxiv.org/abs/1807.04938

Tendermint Algorithm Overview

● Processes take turns in the role of proposer
○ Round-based model

○ Each round has a predefined proposer

○ Goal: proposer imposes a decision

● Similar in spirit to Consensus algorithm III

● We assume a correct “majority”:
○ > ⅔ processes are correct (quorums)

○ < ⅓ processes may be Byzantine

○ N = 3f + 1

https://arxiv.org/pdf/1807.04938.pdf

○ > ½ processes are correct
○ N = 2f + 1

○ Benign (non-Byzantine case)

Rounds & Dances

Locking: Doing the Polka

● Locked values means PRECOMMIT was sent
● Two variables keep track of the last locked value:

○ lockedValue
■ Retains the value itself; initially nil

○ lockedRound,
■ Initially -1

Consensus instance (height) 0

Consensus instance 1

…

Round 1Round 0

Round 1Round 0

Round 2

…

Round

● Proposal, Prevote, Precommit -> decision
● Has a predefined proposer process

Proposal -> Prevote -> Precommit

Lawful
Algorithm
Overview
(good case)

Lawful
Algorithm
Overview

Outdated or
late

Tendermint consensus
algorithm

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PREVOTE, r, id(v)> <PRECOMMIT, r, id(v)>

lockedValue = nil
lockedRound = -1
validValue = nil
validRound = -1
step = Propose

slow

decide

P1’s round

lockedValue = v
lockedRound = r

let’s dig into different scenarios

Propose Step -> Prevote Step

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PREVOTE, r, nil> Reject Proposal at p2 if:

lockedRound >= vr and
lockedValue != v
OR

TimeoutPropose

TimeoutPropose expired
and no Proposal is
received

p1 sends outdated
proposal to p2

slow

Propose Step -> Prevote Step

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PREVOTE, r, id(v)>

p2 accepts Proposal if:

v is valid AND

 lockedRound = -1

 OR lockedValue = v

OR

Polka:
 vr > lockedRound and
 p2 delivered
 2f+1 <PREVOTE, vr, id(v)>

Prepare Step -> Precommit Step

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PREVOTE, r, id(v)> <PRECOMMIT, r, id(v)>

UPON <PROPOSAL, r, v, vr> AND
2f+1 <PREVOTE, r, id(v)>

lockedValue = v; lockedRound = r
validValue = v; validRound = r
BROADCAST <PRECOMMIT, r, id(v)>

Prepare Step -> Precommit Step

p1

p2

p3

p4

<PROPOSAL, r, v, vr>

<PREVOTE, r, id(v)>

<PRECOMMIT, r, nil>

TimeoutPrepare

<PREVOTE, r, nil>

<PREVOTE, r, id(v)>

UPON <PROPOSAL, r, v, vr> AND
any 2f+1 <PREVOTE, r, *>

Trigger TimeoutPrepare
(any values)

Prepare Step -> Precommit Step

p1

p2

p3

p4

<PROPOSAL, r, v, vr>

<PREVOTE, r, id(v)>

<PRECOMMIT, r, id(v)>

UPON <PROPOSAL, r, v, vr> AND
any 2f+1 <PREVOTE, r, *>

Trigger TimeoutPrepare

TimeoutPrepare

<PREVOTE, r, nil>

<PREVOTE, r, id(v)>

<PREVOTE, r, id(v)>

(any values)

Decide v

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PRECOMMIT, r, id(v)>

UPON <PROPOSAL, r, v, vr> AND
2f+1 <PRECOMMIT, r, id(v)>

DECIDE v

Precommit Wait Step -> Start Next
Round

p1

p2

p3

p4

<PRECOMMIT, r, id(v)>

UPON any 2f+1 <PRECOMMIT, r, *>
Trigger TimeoutPrecommit

<PRECOMMIT, r, id(v)>

<PRECOMMIT, r, nil>

TimeoutPrecommit

Start Round r+1

Agreement (Safety) & Intersection

● Any two quorums of size 2f+1
have at least a correct
process in common

● At most one value can be
locked in a round

● If a correct process decided
v in round r, only v can be
locked in rounds r’ >= r

● Only v can be decided in
rounds r’ >= r

impossible
common
correct process

Question: What can happen if there are more
than ⅓ faulty processes?

Crime & Punishment
Forks & fork-accountability

Fork-accountability
Identify & Punish Malicious Processes

● Upon a fork, every correct process proves its innocence by
justifying its transitions (revealing its message log)

● Key trick is proving that in event of fork, we have enough
information seen (and stored) by correct processes

1. Processes send their vote sets to a verification entity (assumes synchrony, i.e., P)
2. Cluster the vote sets by the senders (identify senders based on digital signatures).
3. Determine – for each process – if protocol transitions are valid or not, justifying the actions of

correct processes and finding malicious processes.

Algorithm:

https://github.com/tendermint/tendermint/blob/master/docs/spec/consensus/fork-accountability.md

Malicious Processes

1. Sending more than one PREVOTE message in a round.

2. Sending more than one PRECOMMIT message in a round.

3. Sending PRECOMMIT message without receiving +2/3 matching PREVOTE messages

4. Sending PREVOTE message for the value V in round R but having lock on some other value V’

Examples of malicious actions:

Punishment
– slash bonded stake (remove from process set)

Novelties

Open
Challenges

1. Gossip layer (instead of all-to-all links)
2. Lite client (e.g., a mobile phone)
3. Robustness (Jepsen tests)
4. ABCI – interface b/t consensus and application layer

1. Rust implementation of consensus
2. Formal verification of consensus
3. Interblockchain Communication Protocol – IBC

https://github.com/tendermint/tendermint/blob/master/docs/spec/consensus/light-client.md
https://jepsen.io/analyses/tendermint-0-10-2
https://github.com/tendermint/tendermint/tree/master/docs/spec/abci
https://github.com/cosmos/ics

drop by anytime
INR 327

(Innovation Park soon)

adi@interchain.io

Student Projects
● AT2 ~ implementation of consensus-less payments

● IBC ~ a “TCP/IP” for interconnecting ledgers

● Rust ~ Implementation of Tendermint modules (consensus, mempool, fast sync) using Prusti and Rust.

● Stainless ~ Implementation of Tendermint modules (consensus, mempool) using Stainless and Scala.

● Facebook Libra ~ comparative analysis of consensus algorithms.

● Mempool (performance analysis); adversarial engineering.

Complete list:
https://dcl.epfl.ch/site/education#collaborative_projects

https://dcl.epfl.ch/site/education#collaborative_projects

Acknowledgements & Collaborators

Update validValue while Step = any

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PREVOTE, r, id(v)>

UPON <PROPOSAL, r, v, vr> AND
2f+1 <PREVOTE, r, id(v)>

validValue = v; validRound = r

After GST

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PREVOTE, r, id(v)>

If p (correct) locks a value v
in round r, then
Before the end of round r,
every correct set:

validValue = v
validRound = r

validValue = v
validRound = r

Termination Scenario

P1 is correct AND for every correct process:
 lockedValue = v OR lockedRound < vr AND
 Communication between correct processes is timely

Then all correct processes decide v in round r

p1

p2

p3

p4

<PROPOSAL, r, v, vr> <PREVOTE, r, id(v)> <PRECOMMIT, r, id(v)>

How to ensure Termination
Scenario

● If GST starts at time t AND
● Highest round started by correct process at time t is r0 AND
● At the end of round r0, p1 is a correct process with the highest lockedRound

Then, in a round r1 > r0 in which p1 is a proposer:

P1 sends <PROPOSAL, r1, validValue, validRound> AND

validRound of p1 is > lockedRound or validValue = lockedValue for every correct process

AS for every round r (r0 < r < r1),

● if a correct process locked some value v’ in the round r,
● before the end of the round r, p1 sets validValue to v’ and validRound to r

System model

GST (Global Stabilization Time)

Communication is asynchronous
and unreliable

Communication is timely
and reliable

t

● Partially synchronous system model (DLS88)
○ Communication between correct processes is reliable and timely (bounded with Delta) after

GST

● At most f processes can be faulty (Byzantine faults)

● Gossip communication:
○ If a correct process receives a message m at time t, all correct processes will receive m before

max(t, GST) + Delta

States in Tendermint consensus

https://github.com/tendermint/spec/blob/master/spec/consensus/consensus.md

