Lawfulness,
Crime, & Punishment
In Tendermint

Adi Seredinschi
/'Y Interchain Foundation

Distributed Algorithms // EPFL Fall’19

consensus Vvs.
Blockchain

Application

Consensus Algorithm

=
©
<
O
X
3]
L=
0

Networking (links,
broadcast)

juliuLiapue |

Consensus: “processes propose values and have to agree
on one among these values” (last week)

Models:

o Benign: crash-stop processes (P, <>P algorithms)
o Today: Byzantine processes

m e.g., buggy, malicious & adversarial, rational

m Authenticated links (dig. sigs. assumption)

Blockchain

e Can mean different things
e Often, the whole stack is the “blockchain”

e Builds on a consensus core -> total order
o Multiple instances of consensus

Roadmap

Lawful BFT Consensus Algorithm

Basic Tendermint Consensus j E ‘

Crime & Punishment
Forks

Novelties, Open
& Projects

Lawful Algorithm

Basic Tendermint BFT Consensus

Properties

Validity Predicate-based Byzantine Consensus (Crain et al, 2017)

1. Validity: A decided value is valid, i.e., it satisfies a predicate valid().
2. Agreement: No two correct processes decide differently.

3. Termination: All correct processes eventually decide on a value.
4,

Integrity: No correct process decides more than once (w.r.t. a consensus instance).

http://arxiv.org/abs/1807.04938

Tendermint Algorithm Overview

e Similar in spirit to Consensus algorithm Il

€

e We assume a correct “majority”: Consensus algorithm III

o >?%sprocesses are correct (quorums) _ _ _
* A uniform consensus algorithm assuming:

o < Ysprocesses may be Byzantine * a correct majority
o N=3f+1 ® a <>P failure detector
e Processes take turns in the role of proposer © > processes are correct
o N=2f+1

o Round-based model
o Benign (non-Byzantine case)

o Each round has a predefined proposer

o Goal: proposer imposes a decision

https://arxiv.org/pdf/1807.04938.pdf

Rounds & Dances

Round

i}

e Proposal, Prevote, Precommit -> decision
e Has a predefined proposer process

(Round 0L Round 1 s

Consensus instance 1 Locking: Doing the Polka

* e Locked values means PRECOMMIT was sent
N - ound 2 e Two variables keep track of the last locked value:
lockedValue

O
. . m Retains the value itself; initially nil
Consensus instance (height) 0 o lockedRound
' m Initially -1

Proposal -> Prevote -> Precommit

New Height

Valid block

+2/3
precommit for

+2/3 prevote
for block

New Height

Propose —_r—
4 Valid block
Outdated or \
late ¥

Prevote Nil Prevote Block

A

+2/3

\

| no+2/3
\precommit for
\

precommit for

no +2/3 prevote
for block

Precommit Nil

+2/3 prevote
for block

Precommit Block

Tendermint Consensus lockedValue = nil
algorithm Iockedround — 1

validValue = nil

validRound = -1

step = Propose
P1’s round

///; <PROPOSAL, r, Vv, Vr> .<PREVOTE, r, id(, <PRECOMMIT, r, 1id(
1 1
\ M M dectas
P3
Py

Propose Step -> Prevote Step

p1 sends outdated
proposal to p2

<PROPOSAL, r, v, vr> |<KPREVOTE, r, nil> Reject Proposal at p2 if:

OR

o
lockedRound >= vr and
lockedValue != v

p2 w

Ps

> TimeoutPropose expired
and no Proposal 1is
received

slow o >
TimeoutPropose

Propose Step -> Prevote Step

P2 accepts Proposal if:

v 1s wvalid AND

<PROPOSAL, r, v, vr> <PREVOTE, r, id(v)> lockedRound = -1

OR lockedValue = v

N

Polka:

/
N ’
N

—> vr > lockedRound and
p2 delivered
2f+1 <PREVOTE, vr, id(v)>

Prepare Step -> Precommit Step

UPON <PROPOSAL, r, v, vr> AND

2f+1 <PREVOTE, r, id(v)>
lockedValue = v; lockedRound
validValue = v; validRound =

=r
r
)

BROADCAST <PRECOMMIT, r, id(wv)>

<PROPOSAL, r, v, vr> <PREVOTE, r, <PRECOMMIT,

r,

/

\

Prepare Step -> Precommit Step

UPON <PROPOSAL, r, v, vr> AND
any 2f+1 <PREVOTE, r, *> (an VaIUES)

Trigger TimeoutPrepare

b <PROPOSAL, r, Vv, Vvr> <PRECOMMIT, r, nil>
1

<PREVOTE, r, id(
<PREVOTE, r, id(wv)>
P, -
P3 \\\\\\\\\\\

<PREVOTE, r, nil>

Prepare Step -> Precommit Step

UPON <PROPOSAL, r, v, vr> AND
any 2f+1 <PREVOTE, r, *> (an VaIUES)

Trigger TimeoutPrepare

0 <PROPOSAL, r, v, vr> <PRECOMMIT, r, id(v)>
1
\\\\\\\ <PREVOTE, r, id(v)>
<PREVOTE, r, id(v)>
p2 14 14 E >

<PREVOTE, r, id(v)> TimeoutPrepare

<PREVOTE, r, nil> \
P, -

Decide v

<PROPOSAL,

r,

vy

vr>

UPON <PROPOSAL, r, v,

DECIDE v

vr> AND
2f+1 <PRECOMMIT, r, id(v)>

<PRECOMMIT,

r,

id(v) >

Precommit Wait Step -> Start Next

Round

UPON any 2f+1 <PRECOMMIT, r, *>
Trigger TimeoutPrecommit

<PRECOMMIT, r, id(v)>

\

Start

Round r+1

. -
<PRECOMMIT, r, ld(iij/////// TimeoutPrecommit

>

<PRECOMMIT, r, nil>

Agreement (Safety) & Intersection

®¢ Any two quorums of size 2f+1
have at least a correct

process 1in common

® At most one wvalue can be

‘ ‘ ‘ ‘ locked in a round

A @ If a correct process decided

v 1n round r, only v can be

) locked in rounds r’ >= r
common . .
correct process ®¢ Only v can be decided 1in impossible

rounds r’ >= r

Question: What can happen if there are more

Crime & Punishment

Forks & fork-accountability

Fork-accountability

e Upon a fork, every correct process proves its innocence by
\ justifying its transitions (revealing its message log)

e Key trick is proving that in event of fork, we have enough
information seen (and stored) by correct processes

Common history Fork /|

- >

Algorithm:

1. Processes send their vote sets to a verification entity (assumes synchrony, i.e., P)

2. Cluster the vote sets by the senders (identify senders based on digital signatures).

3. Determine — for each process - if protocol transitions are valid or not, justifying the actions of
correct processes and finding malicious processes.

https://github.com/tendermint/tendermint/blob/master/docs/spec/consensus/fork-accountability.md

Malicious Processes

Examples of malicious actions:

1. Sending more than one PREVOTE message in a round.

2. Sending more than one PRECOMMIT message in a round.

3. Sending PRECOMMIT message without receiving +2/3 matching PREVOTE messages

4. Sending PREVOTE message for the value V in round R but having lock on some other value V'
Punishment

— slash bonded stake (remove from process set)

Novelties

A WON =

Gossip layer (instead of all-to-all links)

Lite client (e.g., a mobile phone)

Robustness (Jepsen tests)

ABCI - interface b/t consensus and application layer

Open
Challenges

1. Rust implementation of consensus
2. Formal verification of consensus
3. Interblockchain Communication Protocol - IBC

https://github.com/tendermint/tendermint/blob/master/docs/spec/consensus/light-client.md
https://jepsen.io/analyses/tendermint-0-10-2
https://github.com/tendermint/tendermint/tree/master/docs/spec/abci
https://github.com/cosmos/ics

Student Projects

e AT2 ~ implementation of consensus-less payments

e IBC ~ a “TCP/IP” for interconnecting ledgers

e Rust ~ Implementation of Tendermint modules (consensus, mempool, fast sync) using Prusti and Rust.
e Stainless ~ Implementation of Tendermint modules (consensus, mempool) using Stainless and Scala.
e Facebook Libra ~ comparative analysis of consensus algorithms.

e Mempool (performance analysis); adversarial engineering.

Complete list:
https://dcl.epfl.ch/site/education#collaborative_projects

drop by anytime
INR 327
(Innovation Park soon)

adi@interchain.io

https://dcl.epfl.ch/site/education#collaborative_projects

Acknowledgements & Collaborators
_— . -

STANFORD
UNIVERSITY

Update validvalue while Step = any

UPON <PROPOSAL, r, v, vr> AND
2f+1 <PREVOTE, r, id(v)>
validValue

v; validRound = r

P <PROPOSAL, r, v, vr> <PREVOTE, r, id(v)>
1

\\

/

After GST

If p (correct) locks a value v
in round r, then
Before the end of round r,

every correct set:

validValue =
validRound =

validValue =

D <PROPOSAL, r, v, vr> <PREVOTE, r, id(v)> %
1 \
p2 /

;;;;;;;avalldRound =

Termination Scenario

<PROPOSAL, r, v, vr> ,<PREVOTE, r, id(v)> <PRECOMMIT,

r,

id(v) >

\/

\/

P, is correct AND for every correct process:
lockedValue = v OR lockedRound < vr AND

Communication between correct processes 1s timely

Then all correct processes decide v in round r

How to ensure Termination

Scenario
e |f GST starts at timet AND

e Highest round started by correct process at time tis r, AND
e Attheend of roundr,, p, is a correct process with the highest lockedRound

Then,inaroundr, >r,in which p. is a proposer:
P, sends <PROPOSAL, r,, validvValue, validRound> AND

validRound of p. is > lockedRound or validValue = lockedValue for every correct process
AS for every round r (r0 <r<r),

e if a correct process locked some value v' in the round r,
e before the end of the roundr, p, sets validValue to v’ and validRound to r

System model

e Partially synchronous system model (DLS88)

o Communication between correct processes is reliable and timely (bounded with Delta) after
GST

e At most f processes can be faulty (Byzantine faults)

e (ossip communication:

o If a correct process receives a message m at time t, all correct processes will receive m before
max(t, GST) + Delta

Communication is asynchronous Communication is timely

and unreliable | and reliable

| ot
GST (Global Stabilization Time)

States in Tendermint consensus

State Machine Diagram

4+ ik
T 1 4

v | (Wait til "CommmitTime+timeoutCommit’

o + o ———— 4

B > | Propose + 4 | NewHeight |

| o + | o ———— 4
I | %
| (Else, after timeoutPrecommit) v |
e ———+ e ——————— - |
| Precommit | < + Prevote | |
e ———+ e + |
| (When +2/3 Precommits for block found) |
v I

Commit

* Set CommitTime = now;
* Wait for block, then stage/save/commit block;

b o————
+ - — 4+

https://github.com/tendermint/spec/blob/master/spec/consensus/consensus.md

