
Distributed Algorithms
Fall 2019

Causal & Total Order Broadcast
4th exercise session, 14/10/2019

Matteo Monti <matteo.monti@epfl.ch>
Athanasios Xygkis <athanasios.xygkis@epfl.ch>

1

mailto:matteo.monti@epfl.ch
mailto:athanasios.xygkis@epfl.ch


Exercise 1
Would it make sense to add the total-order property to the best-effort broadcast?

2



Exercise 1 (Solution)
Total order property: Let m1 and m2 be any two messages and suppose p and q 
are any two correct processes that deliver m1 and m2. If p delivers m1 before m2, 
then q delivers m1 before m2.

3

The resulting abstraction would not make much sense in a failure-prone 
environment, as it would not preclude the following scenario:

Assume that a process p broadcasts several messages with best-effort properties 
and then crashes. Since it is not guaranteed that all correct processes will receive 
the same set of messages, we might end up having some processes delivering all 
those messages (in the same order), whereas some other correct processes might 
end up not delivering any message.



Exercise 2
What happens in our "Consensus-Based 
Total-Order Broadcast" algorithm, if the 
set of messages delivered in a round is 
not sorted deterministically after deciding 
in the consensus abstraction, but before 
it is proposed to consensus? 

What happens in that algorithm if the set 
of messages decided on by consensus is 
not sorted deterministically at all?

4

Consensus-Based Total-Order Broadcast algorithm



Exercise 2 (Solution 1/2)
Messages not sorted deterministically after the decision but sorted prior to the 
proposal

If the deterministic sorting is done prior to proposing the set for consensus, instead 
of a posteriori upon deciding, the processes would not agree on a set but on a 
sequence of messages. But if they TO-deliver the messages in the decided order, 
the algorithm still ensures the total order property.

5



Exercise 2 (Solution 2/2)
Messages not sorted deterministically neither a priori nor a posteriori

If the messages, on which the algorithm agrees in consensus, are never sorted 
deterministically within every batch (neither a priori, not a posteriori), then the total 
order property does not hold. 

Even if the processes decide on the same batch of messages, they might 
TO-deliver the messages within this batch in a different order. In fact, the total 
order property would be ensured only with respect to batches of messages, but 
not with respect to individual messages. We thus get a coarser granularity in the 
total order.

6



Exercise 3
The "Consensus-Based Total-Order Broadcast" algorithm transforms a consensus 
abstraction (together with a reliable broadcast abstraction) into a total-order 
broadcast abstraction. 

Describe a transformation between these two primitives in the other direction, that 
is, implement a (uniform) consensus abstraction from a (uniform) total-order 
broadcast abstraction.

7



Exercise 3 (Solution)
Given a total-order broadcast primitive TO, a 
consensus abstraction is obtained as follows:

When a process proposes a value v in consensus, 
it TO-broadcasts v. When the first message is 
TO-delivered containing some value x, a process 
decides x. 

Since the total-order broadcast delivers the same 
sequence of messages at every correct process, 
and every TO-delivered message has been 
TO-broadcast, this abstraction implements 
consensus. 8

upon init do
decided := false

end

upon propose(v) do
TO-broadcast(v)

end

upon TO-deliver(v) do
if not decided then

decided := true
decide(v)

end
end


