
Distributed Systems
Non-Blocking Atomic Commit

Prof R. Guerraoui
Distributed Programming Laboratory

2

Non-Blocking Atomic Commit:
An Agreement Problem

B

A

C

0-1

0-1

0-1

3

Transactions (Gray)
• A transaction is an atomic program

describing a sequence of accesses to
shared and distributed information

• A transaction can be terminated either
by committing or aborting

4

Transactions

beginTransaction
Pierre.credit(1.000.000)
Paul.debit(1.000.000)

outcome := commitTransaction
if (outcome = abort) then …

5

ACID properties
Atomicity: a transaction either performs entirely or none at all

Consistency: a transaction transforms a consistent state into
another consistent state

Isolation: a transaction appears to be executed in isolation

Durability: the effects of a transaction that commits are
permanent

6

The Consistency Contract

Atomicity
Isolation
Durability

Consistency (local)

Consistency (global)

(system)
(programmer)

7

Distributed Transaction

B

A

C

abort-commit

abort-commit

abort-commit

8

Non-Blocking Atomic Commit
• As in consensus, every process has an initial value 0

(no) or 1 (yes) and must decide on a final value 0
(abort) or 1 (commit)

• The proposition means the ability to commit the
transaction

• The decision reflects the contract with the user
• Unlike consensus, the processes here seek to decide

1 but every process has a veto right

9

Non-Blocking Atomic Commit
NBAC1. Agreement: No two processes decide

differently
NBAC2. Termination: Every correct process

eventually decides
NBAC3. Commit-Validity: 1 can only be decided if all

processes propose 1
NBAC4. Abort-Validity: 0 can only be decided if

some process crashes or votes 0

10

p1

p2

p3

propose(0) decide(0)

propose(1)

propose(0)

Non-Blocking Atomic Commit

decide(0)

decide(0)

11

p1

p2

p3

crash

Non-Blocking Atomic Commit
propose(1)

propose(1)

propose(1)

decide(0-1)

decide(0-1)

12

p1

p2

p3

propose(1) decide(1)

propose(1)

propose(1)

2-Phase Commit

decide(1)

decide(1)

13

p1

p2

p3

crash

2-Phase Commit
propose(1) decide(0)

propose(1)

propose(1)
decide(0)

14

p1

p2

p3

crash

2-Phase Commit
propose(1)

propose(1)

propose(1)

15

Non-Blocking Atomic Commit
Events

Request: <Propose, v>
Indication: <Decide, v’>

• Properties:
• NBAC1, NBAC2, NBAC3, NBAC4

16

Algorithm (nbac)
Implements: nonBlockingAtomicCommit (nbac).
Uses:

BestEffortBroadcast (beb).
PerfectFailureDetector (P).
UniformConsensus (uniCons).

upon event < Init > do
prop := 1;
delivered := Æ; correct := P;

17

Algorithm (nbac – cont’d)
upon event < crash, pi > do

correct := correct \ {pi}
upon event < Propose, v > do

trigger < bebBroadcast, v>;
upon event <bebDeliver, pi, v> do

delivered := delivered U {pi};
prop := prop * v;

18

Algorithm (nbac – cont’d)
upon event correct \ delivered = empty do

if correct ¹ P
prop := 0;

trigger < uncPropose, prop>;

upon event < uncDecide, decision> do
trigger < Decide, decision>;

19

nbac with ucons

decide(1)

propose(1)

propose(1)

propose(1)

p1

p2

p3

decide(1)

decide(1)

UCons(1,1)

UCons(1,1)

UCons(1,1)

20

nbac with ucons

decide(0)

propose(1)

propose(1)

propose(1)

p1

p2

p3 decide(0)

UCons(0,0)

UCons(0,0)

crash

21

nbac with ucons

decide(0-1)

propose(1)

propose(1)

propose(1)

p1

p2

p3 decide(0-1)

UCons(0,0-1)

UCons(1,0-1)

crash

22

Non-Blocking Atomic Commit

• Do we need perfect failure detector P?

• 1. <>P is not enough

• 2. P is needed if one process can crash

23

Non-Blocking Atomic Commit

• Do we need perfect failure detector P?

• 1. <>P is not enough

• 2. P is needed if one process can crash

24

p1

p2

p3

crash

1. Run 1

decide(0)

propose(0)

propose(1)

decide(0)propose(1)

25

p1

p2

p3

crash

1. Run 2

decide(0)

propose(1)

propose(1)

decide(0)propose(1)

26

1. Run 3

decide(0)

propose(1)

propose(1)

decide(0)propose(1)

p1

p2

p3

<>P becomes P

27

Non-Blocking Atomic Commit

• Do we need perfect failure detector P?

• 1. <>P is not enough

• 2. P is needed if one process can crash

28

p1

p2

p3

crash

2. P is needed with one crash
NBAC(1,1)

NBAC(1,1)

NBAC(1,1)

NBAC(1,0)

NBAC(1,0)

suspect(p2)

suspect(p2)

29

History

• Atomic Commit (Eswaran/Gray 76 – Gray 78)

• NBAC (Skeen 81)

• Complexity of Sync NBAC (DS 83)

• Async NBAC (Had 90 – Gue 95)

• FD NBAC (DFGHTK 04)

• Fast Async NBAC (KD95, GLS95, GL06)

• Optimal NBAC (GW17)

