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Non-Blocking Atomic Commit: 
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Transactions (Gray)
• A transaction is an atomic program 

describing a sequence of accesses to 
shared and distributed information

• A transaction can be terminated either 
by committing or aborting



4

Transactions

beginTransaction 
Pierre.credit(1.000.000)
Paul.debit(1.000.000)

outcome := commitTransaction
if (outcome = abort) then …
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ACID properties
Atomicity: a transaction either performs entirely or none at all

Consistency: a transaction transforms a consistent state into 
another consistent state

Isolation: a transaction appears to be executed in isolation

Durability: the effects of a transaction that commits are 
permanent
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The Consistency Contract
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Distributed Transaction
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Non-Blocking Atomic Commit
• As in consensus, every process has an initial value 0 

(no) or 1 (yes) and must decide on a final value 0 
(abort) or 1 (commit)

• The proposition means the ability to commit the 
transaction

• The decision reflects the contract with the user
• Unlike consensus, the processes here seek to decide 

1 but every process has a veto right
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Non-Blocking Atomic Commit
NBAC1. Agreement: No two processes decide 

differently 
NBAC2. Termination: Every correct process 

eventually decides
NBAC3. Commit-Validity: 1 can only be decided if all 

processes propose 1
NBAC4. Abort-Validity: 0 can only be decided if 

some process crashes or votes 0
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Non-Blocking Atomic Commit
Events

Request: <Propose, v>
Indication: <Decide, v’>

• Properties:
• NBAC1, NBAC2, NBAC3, NBAC4
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Algorithm  (nbac)
Implements: nonBlockingAtomicCommit (nbac).
Uses: 

BestEffortBroadcast (beb).  
PerfectFailureDetector (P).
UniformConsensus (uniCons).

upon event < Init > do
prop := 1;
delivered := Æ; correct := P;
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Algorithm  (nbac – cont’d)
upon event < crash, pi > do

correct := correct \ {pi}
upon event < Propose, v > do

trigger < bebBroadcast, v>;
upon event <bebDeliver, pi, v> do

delivered := delivered U {pi};
prop := prop * v;
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Algorithm  (nbac – cont’d)
upon event correct \ delivered = empty do

if correct ¹ P
prop := 0;

trigger <  uncPropose, prop>;

upon event < uncDecide, decision> do
trigger < Decide, decision>;
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Non-Blocking Atomic Commit

• Do we need perfect failure detector P?

• 1.  <>P is not enough

• 2. P is needed if one process can crash
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Non-Blocking Atomic Commit

• Do we need perfect failure detector P?
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History 

• Atomic Commit (Eswaran/Gray 76 – Gray 78)

• NBAC (Skeen 81)

• Complexity of Sync NBAC (DS 83)

• Async NBAC (Had 90 – Gue 95)

• FD NBAC (DFGHTK 04)

• Fast Async NBAC (KD95, GLS95, GL06)

• Optimal NBAC (GW17)


