
1© R. Guerraoui

From Message Passing to
Shared Memory

R. Guerraoui
Distributed Computing Laboratory

lcdwww.epfl.ch

Reliable Distributed Storage

2

Registers

The goal

P1

P2

P3

3

Register: Specification

§ A register contains integers : initial value 0

§ Every value written is uniquely identified (this
can be ensured by associating a process id and a
timestamp with the value)

§ Assume a register is local to a process, i.e.,
accessed only by one process: the value returned
by a Read() is the last value written

4

Sequential execution

P2

P1

W(5) W(6)

R() -> 5 R() -> 6

5

Concurrent execution

P2

P1

W(5) W(6)

R1() -> ? R2() -> ? R3() -> ?

6

Execution with failures

P2

P1

W(5) W(6)
crash

R() -> ?

7

Regular register
§ Assumes only one writer

§ Provides strong guarantees when there is no concurrent
operations

§ When some operations are concurrent, the register
provides minimal guarantees

§ Read() returns:
üthe last value written if there is no concurrent or failed

operations
üotherwise the last value written or any value concurrently

written, i.e., the input parameter of some Write()

8

Execution

P2

P1

W(5) W(6)

R1() R2() R3()

9

Results 1

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 0 R3() -> 25

10

Results 2

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 6 R3() -> 5

11

Results 3

P2

P1

W(5)

R() -> 5

W(6)
crash

12

Results 4

P2

P1

W(5)

R() -> 6

W(6)
crash

13

Correctness

§ Results 1: non-regular register (safe)

§ Results 2; 3; 4: regular register

14

Message passing model

A

B

C

15

Implementing a register

§ Implementing Read() and Write() operations at
every process

§ Before returning a Read() value, or returning the
ok of a Write(), the process must communicate
with other processes

16

A fail-stop algorithm

We assume a fail-stop model:

Processes can fail by crashing (no recovery)
Channels are reliable
Failure detection is perfect (completeness and
accurary)

17

We implement a regular register
Every process pi has a local copy of the register
value vi
Every process reads locally
The writer writes globally, i.e., at all (non-
crashed) processes

A fail-stop algorithm

18

A fail-stop algorithm

Write(v) at pi
send [W,v] to all
for every pj, wait
until either:

receive [ack] or
detect [pj]

Return ok

At pi:
when receive [W,v]
from pj
vi := v
send [ack] to pj

Read() at pi
Return vi

19

Correctness (liveness)

üA Read() is local and eventually returns

üA Write() eventually returns, by the
(a) the completeness property of the

failure detector, and
(b) the reliability of the channels

20

Correctness (safety – 1)

(a) In the absence of concurrent or
failed operation, a Read() returns the
last value written

Assume a Write(x) terminates and no other
Write() is invoked. By the accuracy property of the
failure detector, the value of the register at all
processes that did not crash is x. Any subsequent
Read() invocation by some process pj returns the
value of pj, i.e., x, which is the last written value

21

Correctness (safety – 2)

(b) A Read() returns the value
concurrently written or the last value
written

Let x be the value returned by a Read(): by
the properties of the channels, x is the
value of the register at some process. This
value does necessarily come from the last
or a concurrent Write().

22

But

What if failure detection is not perfect?

Can we devise an algorithm that
implements a regular register and tolerates
an arbitrary number of crash failures?

23

Lower bound

§ Proposition: any wait-free asynchronous
implementation of a regular register requires a
majority of correct processes

§ Proof (sketch): assume a Write(v) is performed and n/2
processes crash, then a Read() is performed and the other
n/2 processes are up: the Read() cannot see the value v

§ The impossibility holds even with a 1-1 register (one writer
and one reader)

24

The majority algorithm [ABD95]

§ P1 is the writer and any process can be reader
§ A majority of the processes is correct (the rest can

fail by crashing – no recovery)
§ Channels are reliable

§ Every process pi maintains a local copy of the
register vi, as well as a sequence number sni and a
read timestamp rsi

§ Process p1 maintains in addition a timestamp ts1

25

Algorithm - Write()

§ Write(v) at p1
ü ts1++
ü send [W,ts1,v] to all
ü when receive [W,ts1,ack]

from majority
üReturn ok

§ At pi
üwhen receive [W,ts1, v]

from p1
üIf ts1 > sni then

l vi := v
l sni := ts1
l send [W,ts1,ack] to p1

26

Algorithm - Read()

§ Read() at pi
ü rsi++
üsend [R,rsi] to all
ü when receive [R,

rsi,snj,vj] from majority
üv := vj with the largest snj
üReturn v

§ At pi
üwhen receive [R,rsj]

from pj
ü send [R,rsj,sni,vi] to pj

27

What if?

Any process that receives a write message
(with a timestamp and a value) updates its
value and sequence number, i.e., without
checking if it actually has an older
sequence number

28

P1
W(5) W(6)

P2

sn1 = 1; v1 = 5

Old writes

P3

sn2 = 1; v2 = 5

sn3 = 2; v3 = 6 sn3 = 1; v3 = 5

R() -> 5

sn1 = 2; v1 = 6

29

Correctness 1

ü Liveness: Any Read() or Write() eventually
returns by the assumption of a majority of
correct processes (if a process has a newer
timestamp and does not send [W,ts1,ack], then
the older Write() has already returned)

ü Safety 2: By the properties of the channels, any
value read is the last value written or the value
concurrently written

30

Correctness 2 (safety – 1)

(a) In the absence of concurrent or
failed operation, a Read() returns the
last value written

Assume a Write(x) terminates and no other
Write() is invoked. A majority of the processes
have x in their local value, and this is associated
with the highest timestamp in the system. Any
subsequent Read() invocation by some process pj
returns x, which is the last written value

31

Atomicity

§ An atomic register provides strong guarantees even
when there is concurrency and failures: the execution is
equivalent to a sequential and failure-free execution
(linearization)

§ Every failed (write) operation appears to be either
complete or not to have been invoked at all

And

§ Every complete operation appears to be executed at
some instant between its invocation and reply time events

32

Regular vs Atomic

§ For a regular register to be atomic, two successive Read()
must not overlap a Write()

§ The regular register might in this case allow the first
Read() to obtain the new value and the second Read() to
obtain the old value

33

Sequential execution

P2

P1

W(5) W(6)

R() -> 5 R() -> 6

34

Concurrent execution

P2

P1

W(5) W(6)

R1() -> ? R2() -> ? R3() -> ?

35

Execution with failures

P2

P1

W(5) W(6)
crash

R() -> ?

36

Execution 1

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 0 R3() -> 25

37

Execution 2

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 6 R3() -> 5

38

Execution 3

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 5 R3() -> 5

39

Execution 4

P2

P1

W(5) W(6)

R1() -> 5 R2() -> 6 R3() -> 6

40

Execution 5

P2

P1

W(5)

R() -> 5

W(6)
crash

41

Execution 6

P2

P1

W(5)

R() -> 5

Execution 6

P2

P1

W(5)

R() -> 6

W(6)
crash

42

Execution 7

P2

P1

W(5)

R() -> 6

P2

P1

W(5)

R() -> 5

W(6)
crash

43

Fail-stop algorithms

We first assume a fail-stop model; more
precisely:

Any number of processes can fail by crashing
(no recovery)
Channels are reliable
Failure detection is perfect: accuracy and
completeness

44

The regular algorithm

Consider our fail-stop regular register algorithm
Every process has a local copy of the register
value
Every process reads locally
The writer writes globally, i.e., at all (non-
crashed) processes

45

The regular algorithm

Write(v) at pi
send [W,v] to all
for every pj, wait
until either:

received [ack] or
detect [pj]

Return ok

At pi:
when receive [W,v]
from pj
vi := v
send [ack] to pj

Read() at pi
Return vi

46

Atomicity?

P1

P2
W(5) W(6)

R1() -> 5 R2() -> 6

v1 = 5 v1 = 6

P3
R3() -> 5

v3 = 5

47

Linearization?

P1

P2
W(5) W(6)

R1() -> 5 R2() -> 6

P3
R3() -> 5 ??

48

Fixing the pb: read-globally

Read() at pi
send [W,vi] to all
for every pj, wait until either:

receive [ack] or
detect [pj]

Return vi

49

Still a problem

P1

P2
W(5) W(6)

R() -> 5

P3
R() -> 5

50

Linearization?

P1

P2
W(5) W(6)

R1() -> 5

P3
R3() -> 5 ??

51

A fail-stop 1-1 atomic algorithm

Write(v) at p1
send [W,v] to p2
Wait until either:

receive [ack]
from p2 or
detect [p2]

Return ok

At p2:
when receive [W,v]
from p1
v2 := v
send [ack] to p2

Read() at p2
Return v2

52

every process maintains a local value of
the register as well as a sequence number

the writer, p1, maintains, in addition a
timestamp ts1

any process can read in the register

A fail-stop 1-N algorithm

53

Write(v) at p1
ts1++
send [W,ts1,v] to all
for every pi, wait
until either:

receive [ack] or
detect [pi]

Return ok

Read() at pi
send [W,sni,vi] to all
for every pj, wait
until either:

receive [ack] or
suspect [pj]

Return vi

A fail-stop 1-N algorithm

54

A 1-N algorithm (cont’d)
At pi

When pi receive [W,ts,v] from pj
if ts > sni then

vi := v
sni := ts

send [ack] to pj

55

Why not N-N?

P1

P2
W(X)

W(Z)

R() -> Y

P3

W(Y)

56

The Write() algorithm

§ Write(v) at pi
ü send [W] to all
ü for every pj wait until

l receive [W,snj] or
l suspect pj

ü (sn,id) := (highest snj + 1,i)
ü send [W,(sn,id),v] to all
ü for every pj wait until

l receive [W,(sn,id),ack] or
l detect [pj]

ü Return ok

§ At pi

T1:
ü when receive [W] from pj

l send [W,sn] to pj

T2:
ü when receive [W,(snj,idj),v]

from pj
ü If (snj,idj) > (sn,id) then

l vi := v
l (sn,id) := (snj,idj)

ü send [W,(snj,idj),ack] to pj

57

The Read() algorithm

§ Read() at pi
ü send [R] to all
ü for every pj wait until

l receive [R,(snj,idj),vj] or
l suspect pj

ü v = vj with the highest (snj,idj)
ü (sn,id) = highest (snj,idj)
ü send [W,(sn,id),v] to all
ü for every pj wait until

l receive [W,(sn,id),ack] or
l detect [pj]

ü Return v

§ At pi

T1:
ü when receive [R] from pj

l send [R,(sn,id),vi] to pj

T2:
ü when receive [W,(snj,idj),v]

from pj
ü If (snj,idj) > (sn,id) then

l vi := v
l (sn,id) := (snj,idj)

ü send [W,(snj,idj),ack] to pj

58

From fail-stop to fail-silent

§ We assume a majority of correct processes

§ In the 1-N algorithm, the writer writes in a majority
using a timestamp determined locally and the
reader selects a value from a majority and then
imposes this value on a majority

§ In the N-N algorithm, the writers determines first
the timestamp using a majority

