
DISTRIBUTED ALGORITHMS 2014/2015

Distributed Algorithms 2014
Midterm

October 20, 2014

Name:

Sciper number:

1/6



DISTRIBUTED ALGORITHMS 2014/2015

Question 1

We consider a distributed system with processes that can crash. Mark each of the following properties
with:

S, if it is a safety property, or

L, if it is a liveness property

1. If a process p delivers a message, then p broadcasts at least one other message. Neither L nor S
(not graded)

2. If a process p delivers a message, then p has already broadcast at least one message. S (graded)

3. If a correct process broadcasts a message m, then every process eventually delivers m. Neither L
nor S (not graded)

4. At least one process eventually crashes. L (graded)

5. At least one correct process eventually crashes. S (point for everyone due to conflicting information
given during the exam)

6. If a process p broadcasts a message m, then every correct process delivers m within 10 seconds
after m was broadcast by p. L (graded)

7. No process invokes operation A before time t. S (graded)

2/6



DISTRIBUTED ALGORITHMS 2014/2015

Question 2

a) Give the definition of Total-Order Broadcast.

Module

Name: TotalOrderBroadcast, instance tob.

Events

Request: 〈 tob, Broadcast | m 〉 : Broadcasts a message m to all processes.
Indication: 〈 tob, Deliver | p, m 〉 : Delivers a message m broadcast by process p

Properties:

TOB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.
TOB2: No duplication: No message is delivered more than once.
TOB3: No creation: If a process delivers a message m with sender s, then m was previously

broadcast by process s.
TOB4: Agreement: If a message m is delivered by some correct process, then m is eventually

delivered by every correct process.
TOB5: Total order: Let m1 and m2 be any two messages. Let p be any correct process that

delivers m1 without having delivered m2. Then no correct process delivers m2 before m1.

b) Give the definition of Consensus.

Module

Name: Consensus, instance co.

Events

Request: 〈 co, Propose | v 〉 : Proposes value v for consensus.
Indication: 〈 co, Decide | v 〉 : Outputs decided value v of consensus.

Properties:

CO1: Termination: Every correct process eventually decides some value.
CO2: Validity: If a process decides a value v, then v was proposed by some process.
CO3: Integrity: No process decides twice.
CO4: Agreement: No two correct processes decide differently.

c) Recall the Consensus-Based algorithm for Total-Order Broadcast from the lecture. It transforms
a consensus abstraction (together with a reliable broadcast abstraction) into a total-order broad-
cast abstraction. Describe a transformation in the other direction, that is, implement a consensus
abstraction from a total-order broadcast abstraction.

Implements:
Consensus, instance co.

Uses:
TotalOrderBroadcast, instance tob.

upon event <co, Init> do
decided := false;

3/6



DISTRIBUTED ALGORITHMS 2014/2015
upon event <co, Propose | v> do

trigger <tob, Broadcast | v>;

upon event <tob, Deliver | p, v)> do
if decided = false then

decided := true;
trigger <co, Decide | v>;

4/6



DISTRIBUTED ALGORITHMS 2014/2015

Question 3

Given the following interface and properties of FIFO-order (reliable) broadcast:

Module

Name: FIFOReliableBroadcast, instance frb.

Events

Request: 〈 frb, Broadcast | m 〉 : Broadcasts a message m to all processes.

Indication: 〈 frb, Deliver | p, m 〉 : Delivers a message m broadcast by process p

Properties:

FRB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.

FRB2: No duplication: No message is delivered more than once.

FRB3: No creation: If a process delivers a message m with sender s, then m was previously broadcast
by process s.

FRB4: Agreement: If a message m is delivered by some correct process, then m is eventually
delivered by every correct process.

FRB5: FIFO delivery: If some process broadcasts message m1 before it broadcasts message m2 , then
no process delivers m2 unless it has already delivered m1.

a) Implement FIFOReliableBroadcast using Reliable Broadcast.

For implementing FIFO reliable broadcast there are multiple solutions. Here is presented the
solution with the sequence number.

Implements:
FIFOReliableBroadcast, instance frb

Uses:
ReliableBroadcast, instance rb

upon event <frb, Init> do
lsn := 0;
pending := ∅;
next := [1]N ;

upon event <frb, Broadcast | m> do
lsn := lsn + 1;
trigger <rb, Broadcast | [DATA, sel f , m, lsn]>;

upon event <rb, Deliver | p, [DATA, s,m, sn]> do
pending := pending ∪ {(s, m, sn)};
while exists (s, m′, sn′) ∈ pending such that sn′ = next[s] do

next[s] := next[s] + 1;
pending := pending\{(s, m′, sn′)};
trigger <frb, Deliver | s, m′>;

5/6



DISTRIBUTED ALGORITHMS 2014/2015
b) Give the definition of Causal Broadcast.

Module

Name: CausalOrderReliableBroadcast, instance frb.

Events

Request: 〈crb, Broadcast|m〉: Broadcasts a message m to all processes.
Indication: 〈crb, Deliver|p, m〉: Delivers a message m broadcast by process p

Properties:

CRB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.
CRB2: No duplication: No message is delivered more than once.
CRB3: No creation: If a process delivers a message m with sender s, then m was previously

broadcast by process s.
CRB4: Agreement: If a message m is delivered by some correct process, then m is eventually

delivered by every correct process.
CRB5: Causal delivery: For any message m1 that potentially caused a message m2, i.e., m1 → m2,

no process delivers m2 unless it has already delivered m2.

c) Give a non-blocking algorithm that implements causal broadcast, such that:

• Your algorithm only uses the FIFOReliableBroadcast abstraction as underlying module.

• Even if every correct process broadcasts an infinite number of messages, the message sizes do
not grow indefinitely.

Implements:
ReliableCausalOrderBroadcast, instance rco

Uses:
FIFOReliableBroadcast, instance frb.

upon event <Init> do
delivered := ∅ ;

upon event <rcoBroadcast , m> do
trigger <frbBroadcast, m>;

upon event <frbDeliver | m> do
If m 6∈ delivered do

trigger <frbBroadcast, m>;
trigger <rcoDeliver, m>;
delivered = delivered ∪ {m};

6/6


