DISTRIBUTED ALGORITHMS 2014 /2015

Distributed Algorithms 2014
Midterm

October 20, 2014

Name:

Sciper number:

1/6

DISTRIBUTED ALGORITHMS 2014 /2015

Question 1

We consider a distributed system with processes that can crash. Mark each of the following properties
with:

s, if it is a safety property, or

L, if it is a liveness property

1. If a process p delivers a message, then p broadcasts at least one other message. Neither L nor S
(not graded)

2. If a process p delivers a message, then p has already broadcast at least one message. S (graded)

3. If a correct process broadcasts a message m, then every process eventually delivers m. Neither L
nor S (not graded)

4. At least one process eventually crashes. L (graded)

5. Atleast one correct process eventually crashes. S (point for everyone due to conflicting information
given during the exam)

6. If a process p broadcasts a message m, then every correct process delivers m within 10 seconds
after m was broadcast by p. L (graded)

7. No process invokes operation A before time ¢. S (graded)

2/6

DISTRIBUTED ALGORITHMS 2014 /2015

Question 2
a) Give the definition of Total-Order Broadcast.

Module
Name: TotalOrderBroadcast, instance fob.
Events

Request: (tob, Broadcast | m) : Broadcasts a message m to all processes.
Indication: (tob, Deliver | p,m) : Delivers a message m broadcast by process p
Properties:
TOB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.

TOB2: No duplication: No message is delivered more than once.

TOB3: No creation: If a process delivers a message m with sender s, then m was previously
broadcast by process s.

TOB4: Agreement: If a message m is delivered by some correct process, then m is eventually
delivered by every correct process.

TOBS5: Total order: Let m; and my be any two messages. Let p be any correct process that
delivers m; without having delivered 5. Then no correct process delivers m; before m;.

b) Give the definition of Consensus.

Module
Name: Consensus, instance co.
Events

Request: (co, Propose | v) : Proposes value v for consensus.
Indication: (co, Decide | v) : Outputs decided value v of consensus.

Properties:

CO1: Termination: Every correct process eventually decides some value.

CO2: Validity: If a process decides a value v, then v was proposed by some process.
CO3: Integrity: No process decides twice.

CO4: Agreement: No two correct processes decide differently.

¢) Recall the Consensus-Based algorithm for Total-Order Broadcast from the lecture. It transforms
a consensus abstraction (together with a reliable broadcast abstraction) into a total-order broad-
cast abstraction. Describe a transformation in the other direction, that is, implement a consensus
abstraction from a total-order broadcast abstraction.

Implements:
Consensus, instance co.
Uses:
TotalOrderBroadcast, instance tob.

upon event <co, Init> do
decided := false;

3/6

DISTRIBUTED ALGORITHMS 2014 /2015

upon event <co, Propose | v> do
trigger <tob, Broadcast | v>;

upon event <tob, Deliver | p, v)> do
if decided = false then
decided := true;
trigger <co, Decide | v>;

4/6

DISTRIBUTED ALGORITHMS 2014 /2015

Question 3

Given the following interface and properties of FIFO-order (reliable) broadcast:
Module

Name: FIFOReliableBroadcast, instance frb.
Events

Request: (frb, Broadcast | m) : Broadcasts a message m to all processes.

Indication: (frb, Deliver | p,m) : Delivers a message m broadcast by process p
Properties:

FRB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.
FRB2: No duplication: No message is delivered more than once.

FRB3: No creation: If a process delivers a message m with sender s, then m was previously broadcast
by process s.

FRB4: Agreement: If a message m is delivered by some correct process, then m is eventually
delivered by every correct process.

FRB5: FIFO delivery: If some process broadcasts message 1 before it broadcasts message 1, , then
no process delivers mj; unless it has already delivered ;.

a) Implement FIFOReliableBroadcast using Reliable Broadcast.

For implementing FIFO reliable broadcast there are multiple solutions. Here is presented the
solution with the sequence number.

Implements:

FIFOReliableBroadcast, instance frb
Uses:

ReliableBroadcast, instance rb

upon event <frb, Init> do
Isn :=0;
pending := O;

next := [1]N;

upon event <frb, Broadcast | m> do
Isn == Isn+1;
trigger <rb, Broadcast | [DATA, sel f, m, Isn|>;

upon event <rb, Deliver | p, [DATA, s,m, sn]> do
pending := pending U {(s, m,sn)};
while exists (s, m’,sn’) € pending such that sn’ = next[s| do
next[s] := next[s| +1;
pending := pending\{(s,m’,sn’)};
trigger <frb, Deliver | s, m’>;

5/6

DISTRIBUTED ALGORITHMS 2014/2015
b) Give the definition of Causal Broadcast.

Module
Name: CausalOrderReliableBroadcast, instance frb.
Events

Request: (crb, Broadcast|m): Broadcasts a message m to all processes.
Indication: (crb, Deliver|p, m): Delivers a message m broadcast by process p

Properties:

CRB1: Validity: If a correct process p broadcasts a message m, then p eventually delivers m.

CRB2: No duplication: No message is delivered more than once.

CRB3: No creation: If a process delivers a message m with sender s, then m was previously
broadcast by process s.

CRB4: Agreement: If a message m is delivered by some correct process, then m is eventually
delivered by every correct process.

CRB5: Causal delivery: For any message m1 that potentially caused a message my, i.e., my — my,
no process delivers my unless it has already delivered m;.

¢) Give a non-blocking algorithm that implements causal broadcast, such that:

¢ Your algorithm only uses the FIFOReliableBroadcast abstraction as underlying module.

e Even if every correct process broadcasts an infinite number of messages, the message sizes do
not grow indefinitely.

Implements:

ReliableCausalOrderBroadcast, instance rco
Uses:

FIFOReliableBroadcast, instance frb.

upon event <Init> do
delivered .= @ ;

upon event <rcoBroadcast , m> do
trigger <frbBroadcast, m>;

upon event <frbDeliver | m> do
If m ¢ delivered do
trigger <frbBroadcast, m>;
trigger <rcoDeliver, m>;
delivered = delivered U {m};

6/6

