
DISTRIBUTED ALGORITHMS 2016/2017

Exercise Session 8
GM and VSC

Problem 1

Show that P is the weakest failure detector for Group Membership. The failure detector D is weakest for solving
some problem A (e.g., Consensus or NBAC) if D provides the smallest amount of information about failures that
allows to solve A.
Answer. In order to show that P is the weakest failure detector for Group Membership, we need to show that:

• P can be used to implement Group Membership.

• Group Membership can be used to implement P.

The first direction stems directly from the Group Membership implementation in the class. For the second
direction, we assume that all processes run Group Membership algorithm. Whenever a new view is installed, all
processes that are freshly removed from the view are added to the suspected set. This approach satisfies both Strong
Completeness and Strong Accuracy of P, directly from the corresponding properties of Group Membership.

Problem 2

In this problem we will change the view-synchronous communication (VSC) abstraction in order to allow joins of
new processes. Answer to the following questions:

1. Are the properties of VSC (as given in the class) suitable to accommodate the joins of new processes. Why /
Why not?

2. Change the properties of VSC, so that they allow for implementations that support the joins of new processes.
(Hint: focus on the properties of group membership)

3. Sketch the changes we need to perform on the Consensus-based (Algorithm II) implementation of VSC in
order to support joins.

Answer.
Solution 2.1

No, the properties are not suitable for joins. The most obvious property is Local Monotonicity. Joins imply
that the set of correct processes in a view can increase, and this would break the local monotonicity property.
Furthermore, Completeness and Accuracy only refer to crashes, without imposing any conditions on the correctness
of joins.

Solution 2.2
First, we need to add a < Join|p > event to allow new processes to join the group. After a process emits such

an event, we says that it requested to join. The VSC layer emits a < JoinOk > event to the application when it has
successfully joined a view. The application can start emitting broadcast requests after it receives the JoinOk event.

Group membership properties Let us first look at the four group membership properties. View Monotonicity.
The monotonicity property of VSC (GM1) ensures that the number of processes in a view decreases over time. Since
new processes can join, this needs to change: We conside three possibilities:

• Get rid of this property entirely.

• Require that views do not change for nothing: If a process installs views (j, N) and (j + 1, M), then M 6= N.

• Require that views do not oscillate (i.e., travel back in time): if a process p installs views (i, M) and (j, N) where
j > i, q ∈ M, and q 6∈ N, then for all k > j, if p installs (j,O), then q 6∈ O.

1/5



DISTRIBUTED ALGORITHMS 2016/2017
With the second option, the new property ensures that consecutive views have different sets of processes, i.e., that

the view cannot change if there is no change in the correct set of processes. Notice, however, that it is still possible
for two views to have the same set of processes, e.g., if a processes joins and then crashes. It is also possible for a
process to repeatedly be included and excluded from a view. With the third option, once a process is excluded from
a view it can never come back.
Uniform agreement. The uniform agreement property of VSC (GM2) ensures that all processes install the same
sequence of view. We will keep this property.
Completeness. If we choose the third version of monotonicity, then we can keep the completeness property of the
group membership abstraction. If we choose one of the first two, we need to make some changes: Because the
sequence of views is no longer monotonic, we need to strengthen a bit the completeness property of VSC (GM3): If a
process p crashes, then there is i ∈ N such that for all correct process q, if j > i and q installs view (j, M), then p 6∈ M.
To ensure that processes which want to join eventually join a view, we add the following completeness property: If a
correct process p requests to join, then there is an integer i such that every correct process eventually installs view (i,
M) such that p ∈ M.
Accuracy. If a process p installs views (i, M) and (i + 1, N) where q ∈ M but q 6∈ N, then q has crashed. On top of
those properties, we will also require that a process is included in a view only if it requested so.
Validity. If some process installs a view (i, M) and some process q is in M, then q previously requested to join or q ∈ Π.

Broadcast properties
Let us now look at the broadcast properties of VSC. Those are the same of for reliable broadcast (RB1,2,3,4). We

have two options: either a process which joins needs to“catch-up” on all previously delivered messages, or a new
process can just start with the messages of the first view in which it is included. If we choose the first option, then
we can leave RB1,2,3,4 unchanged. If we choose the second option, then we need to relax Agreement (RB4) so that a
process need to deliver only the messages sent in the view to which it participates: If message m is delivered by
some correct process in view (i, M), then m is eventually delivered by all the process belonging to M. This way, if p
6∈ M then p does not have to deliver m.

View Synchrony
Finally, we will keep the View Synchrony (VS) property as is.

Solution 2.3
The solution is described in Algorithm 1, 2 on the last two pages of this document. The changes to the regular
algorithm are highlighted in red (note that we used the consensus algorithm that appears in the book it is similar in
spirit to the version in the slides).

We add two new local variables to the algorithm: joined and crashed. The joined variable is a boolean flag that is
set to true after the process successfully joins a view (is part of the view members). The joined flag differentiates the
behavior of processes that are just attempting to join. The crashed variable is a local set that keeps track of crash
events received from the failure detector. This set is useful in executions where a process p attempts to join and then
crashes. If another correct process p2 sees the join attempt only after the crash notification, it needs to remember that
it has already seen a crash of p and to disregard the join.

For most events, the only difference to the original algorithm is that we impose the condition joined = true for
event handlers. Recall that such a conditional event handler means that the events are implicitly buffered until the
condition becomes true (see the document describing the language used for module specification in Additional
Material section on the course website). For example, the crash handler is now conditioned by joined = true. This
means that any crash event received by the process while it is still joining will be buffered. The events will, however,
be handled right after the process successfully joins a view.

The joining begins when the application emits a Join event (line 21). If the process has not joined yet and is not
part of the initial set of processes in the view, the process broadcasts a JoinReq message to every other process. The
JoinReq message can be seen as a dual of the crash event. It will be the job of the receiving correct processes (that are
already view members) to handle the join and propose the addition of the joining process to a view.

Upon receiving a JoinReq message (line 23), processes will add the joining process to their correct set. Note that
if the receiving process has already seen a crash of the joining process, the correct set will not be changed (p crashed
will be φ). Changing the correct set will trigger the handler at line 37 and initiate a view change. Processes that have
seen the broadcast from the joining process will propose it in the new view member set. Since the joining process
uses best-effort broadcast, correct processes will eventually receive the JoinReq broadcast message (if the joining
process is also correct).

Another difference with the initial algorithm is that once a decision is taken in the consensus and a process
moves to a new view, every process broadcasts the new view (both its member set and id). This broadcast is useful

2/5



DISTRIBUTED ALGORITHMS 2016/2017
for joining processes. If a joining process sees that it is part of a new view, it will initialize its view id, member set
and correct set accordingly. Finally, the joining process sets the joined flag to true (meaning that it will handle all
buffered events) and emits a JoinOk indication to the application.

3/5



DISTRIBUTED ALGORITHMS 2016/2017

4/5



DISTRIBUTED ALGORITHMS 2016/2017

5/5


