Distributed Algorithms

Fall 2020

Logic 101
 1st exercise session, 28/09/2020

Matteo Monti matteo.monti@epfl.ch
Jovan Komatovic jovan.komatovic@epfl.ch

Example 1 (Conditional statements)

Write the converse, contrapositive and inverse of the following sentence:
"If process x fails, then process y never receives message m"

Reminder:

Let P be the proposition $\mathrm{p} \rightarrow \mathrm{q}$:

- The converse of P is: $q \rightarrow p$:
- The inverse of P is: $\neg p \rightarrow \neg q$
- The contrapositive of P is: $\neg q \rightarrow \neg p$

Notes:

- Only the contrapositive of a conditional statement is equivalent to it.
- The proposition "p iff q" means that both P and the converse of P are true.

Exercise 1 (Conditional statements)

Write the negation of the following sentence:
"If process x fails, then process y never receives message m"

Reminder:
Let P be a proposition. The negation of P is $\neg P$ ("not P "). For example:

- \quad " 7 is odd" $=$ " 7 is not odd" $=$ " 7 is even" (if you prove it!)
- \quad "All cats are animals" = "Some cats are not animals"

Hints:

- The negation of $\neg p \rightarrow \neg q$ is not $p \rightarrow$ $\neg \mathrm{q}$.
- Express the implication in terms of and and or expressions.

Example 2

If the following statement is true:
If process i fails, then instantly all processes jキi fail

Which of the following are also true?

1. If a process $j \neq i$ fails, then process i has failed,
2. If a process $j \neq i$ fails, nothing can be said about process i,
3. If a process $j \neq i$ fails, then process i has not failed
(continues on next slide)

Example 2 (contd)

4. If no process $j \neq i$ fails, nothing can be said about process i,
5. If no process $j \neq i$ fails, then process i has failed,
6. If no process $j \neq i$ fails, then process i has not failed,
7. If all processes $j \neq i$ fail, then process i has failed,
8. If all processes $\mathrm{j} \neq \mathrm{i}$ fail, nothing can be said about process i ,
9. If all processes $j \neq i$ fail, then process i has not failed,
10. If some process $j \neq i$ does not fail, nothing can be said about process i,
11. If some process $j \neq i$ does not fail, then process i has failed,
12. If some process $j \neq i$ does not fail, then process i has not failed.

Exercise 2

Replace "instantly" with "eventually" in Example 2.

Example 3 (Proof by cases)

Let x, y, z, q be natural numbers such that

$$
x^{2}+5 y^{2}+5 z^{2}=q^{2}
$$

Prove that q is even if and only if all of x, y, and z are even as well.

Exercise 3 (Proof by cases)

Prove that $x+|x-7| \geq 7$

Example 4 (Proof by contradiction)

Prove that the set of prime numbers is infinite.

Exercise 4 (Proof by contradiction)

Prove that if α^{2} is even, α is even.

Bonus Exercise 4 (Proof by contradiction)

Prove that $\sqrt{ } 2$ is irrational.
Hint: Use the result of exercise 4

Proof by contradiction:

- In order to prove p, find a contradiction q such that $\neg p \rightarrow$ q is true.
- A contradiction always has the form: $q \equiv r \wedge \neg r$.

Hints:

- Use the result of Exercise 3.
- A rational number is always in the form r / q, where r is integer, q is natural, and r and q have no common divisor.

Example 5 (proof by induction)

Let a swiss chocolate of rectangular shape $m \times n$. What is the smallest number of cuts we need to do, in order to break up the chocolate in individual pieces of size 1×1 ?

A cut is defined as any line that:

1. Does not cross itself,
2. Starts and ends on the perimeter of the chocolate piece it cuts.

Note: You cannot consider a cut on two pieces as a single cut, just because these
e.g. pieces are next to each other.

Exercise 5 (proof by induction)

A chessboard of size $2^{n} \times 2^{n}(n \geq 0)$ has all of its squares painted white, except for one arbitrary square, which is painted black.

Prove that for every $n \geq 0$, you can cover all the white squares of the chessboard with L-shaped non-overlapping tiles.
e.g. $\quad{ }_{n=0}$

$$
n=0
$$

$$
n=2
$$

L-shaped tile

Bonus Exercise 5 (proof by induction)

Consider a country with $n \geq 2$ cities. For every pair of different cities x, y, there exists a direct route (single direction) either from x to y or from y to x. Show that there exists a city that we can reach from every other city either directly or through exactly one intermediate city.

