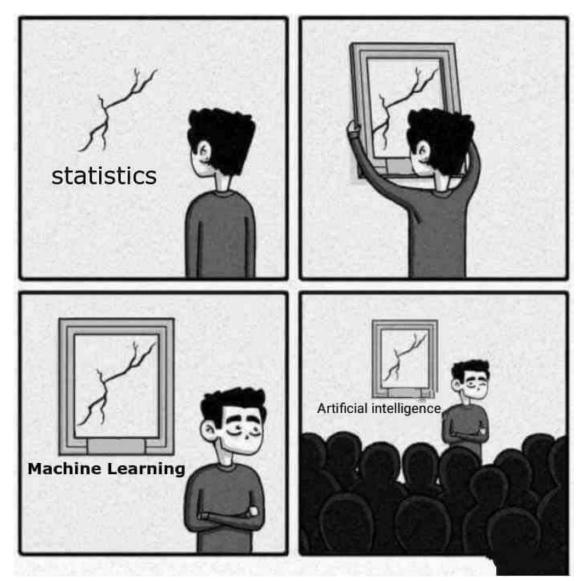
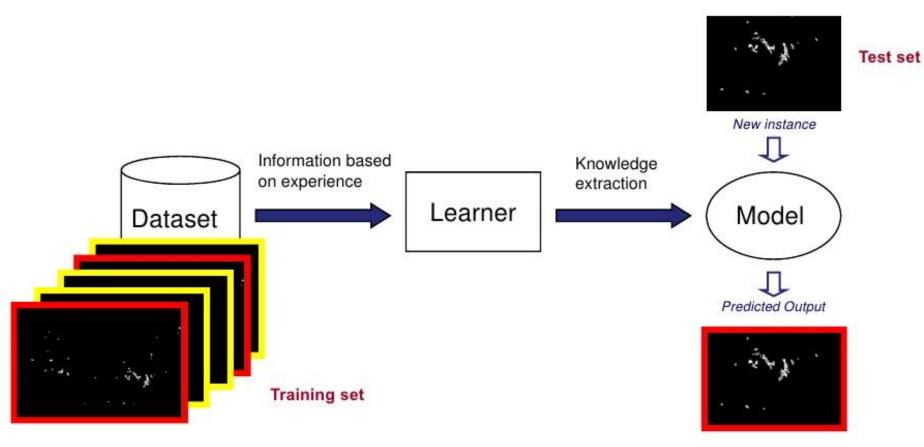
Distributed Machine Learning

Georgios Damaskinos 2018

Machine Learning ?



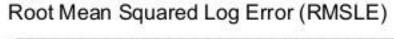
Machine Learning "in a nutshell"

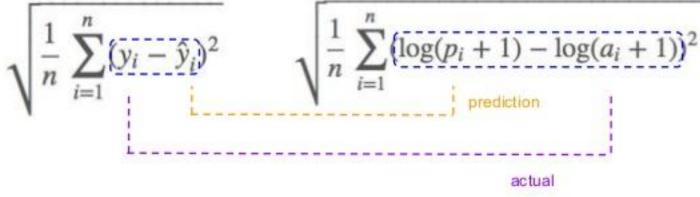


Machine Learning algorithm

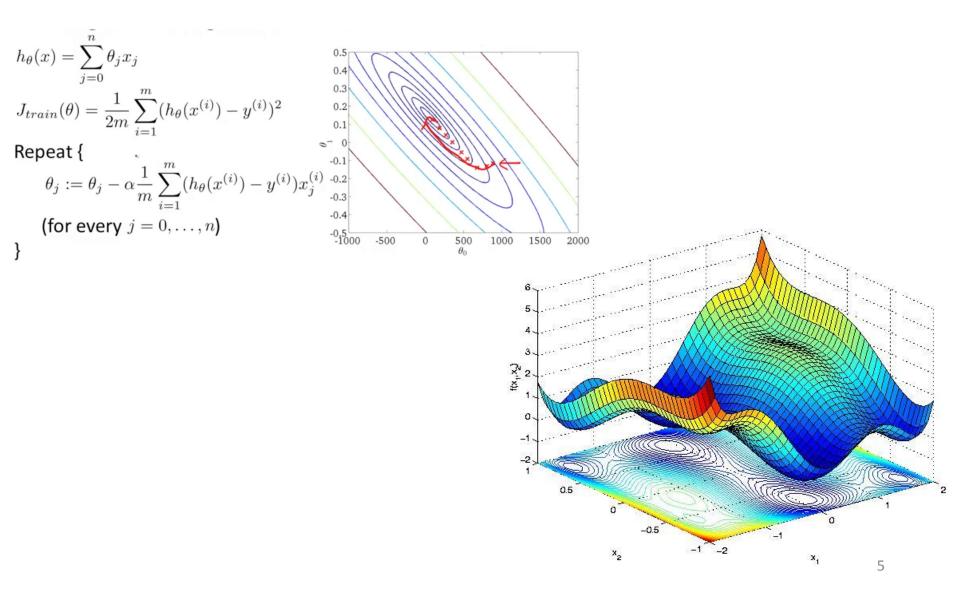
Cost Functions

Root Mean Squared Error (RMSE)



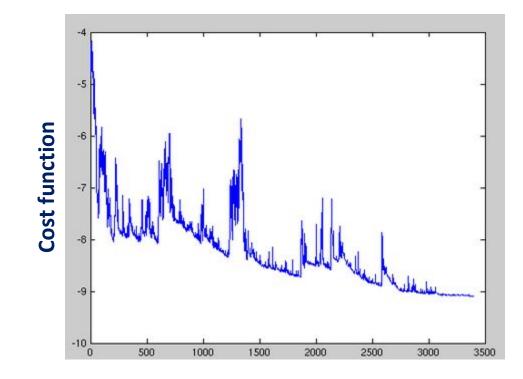


Machine Learning algorithm



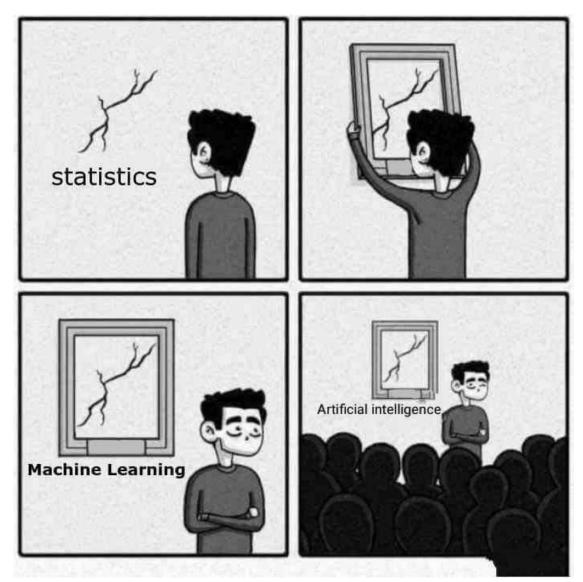
Safety?

Safety?



Convergence

Machine Learning ?



Think big!

"It's not who has the best algorithm that wins." It's who has the most data."

Andrew Ng

Think big!

Example: Image Classification

<u>Data</u>:

ImageNet: 1.3 Million training images (224 x 224 x 3) Model:

ResNet-152: 60.2 Million parameters (model size)

Training time (single node): TensorFlow: **19 days!!**

Think big!

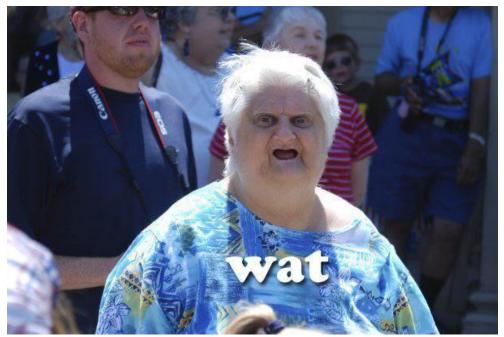
Example: Image Classification

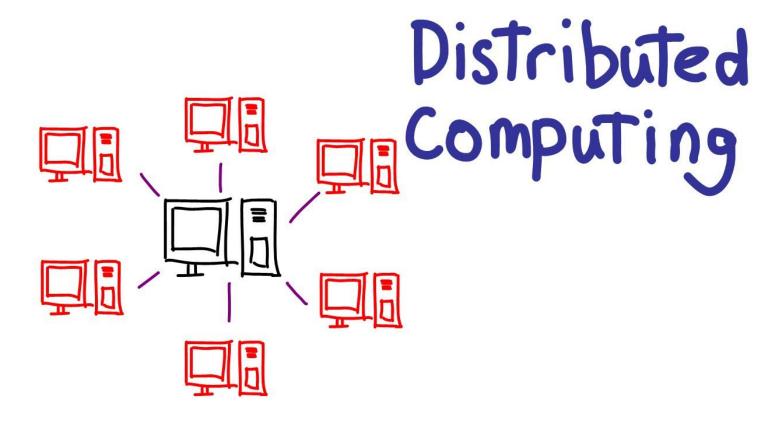
<u>Data</u>:

ImageNet: 1.3 Million training images (224 x 224 x 3) Model:

ResNet-152: 60.2 Million parameters (model size)

Training time (single node): TensorFlow: **19 days!!**

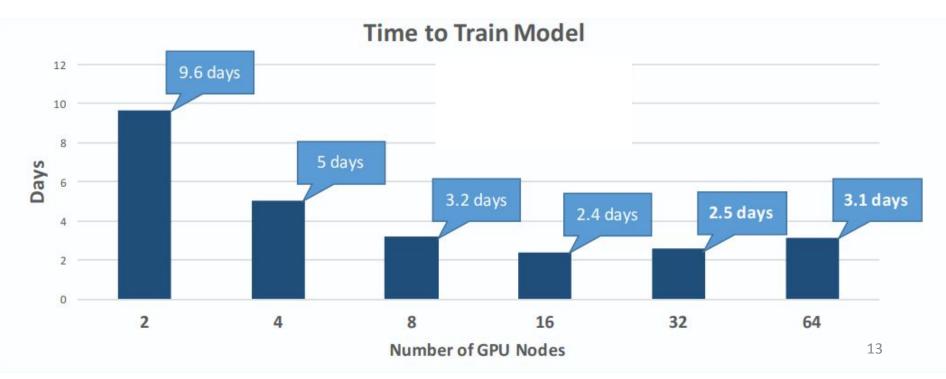




Performance?

Training time (single node): TensorFlow: **19 days**

Training time (distributed): 1024 Nodes (theoretical): *25 minutes* CSCS (3rd top supercomputer, 4500+ GPUs, state-of-the-art interconnect:



Performance?

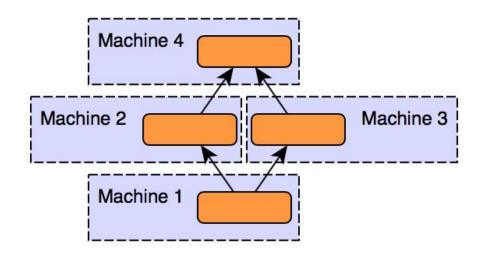
State-of-the-art (ResNet-50): 1 hour [GP+17]

- Batch size = 8192
- 256 GPUs

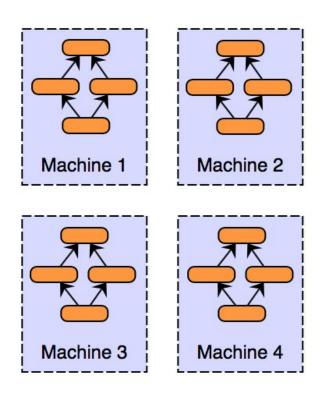
[GP+17] Goyal, Priya, et al. "Accurate, large minibatch SGD: training imagenet in 1 hour." 2017

Distributed ... how?

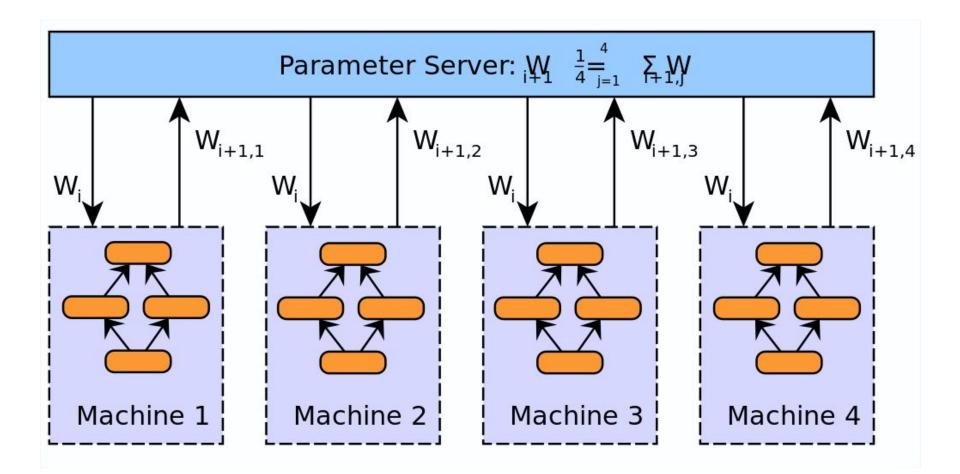
Model Parallelism

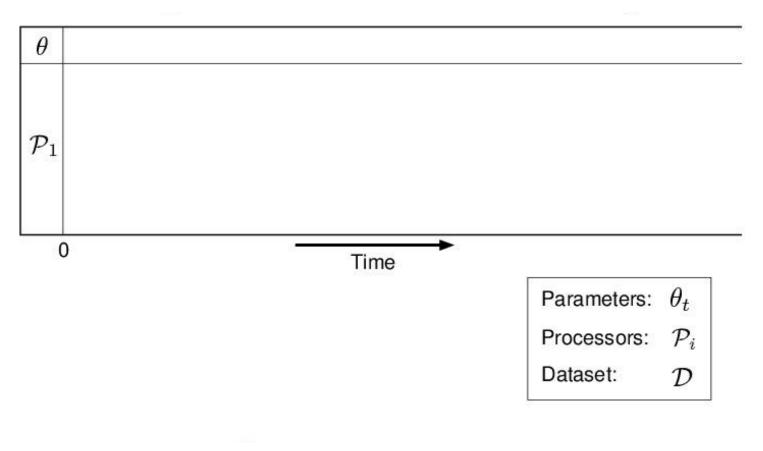


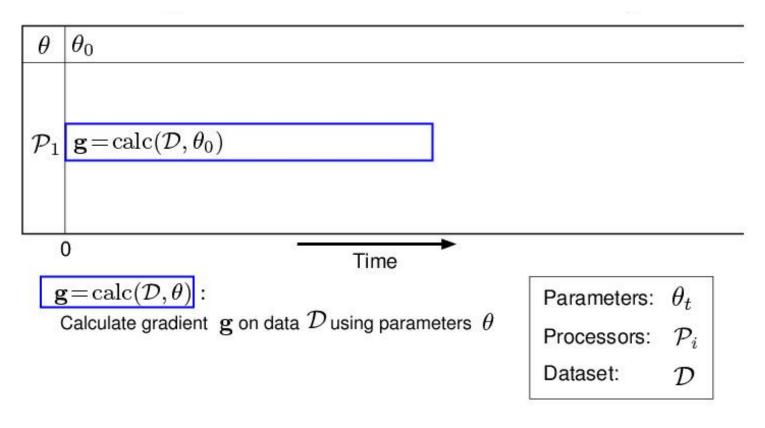
Data Parallelism

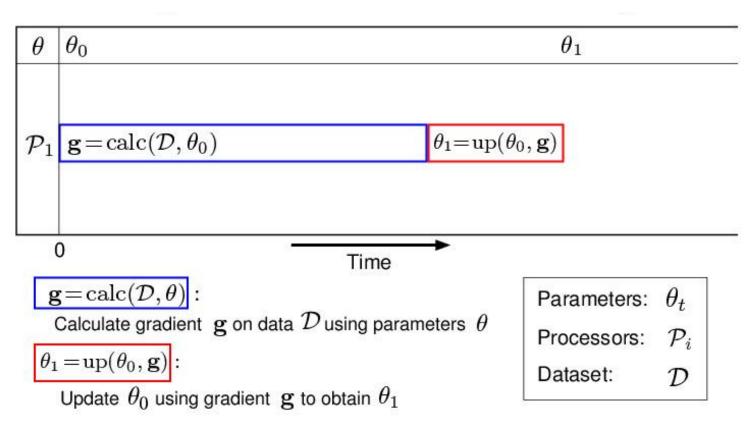


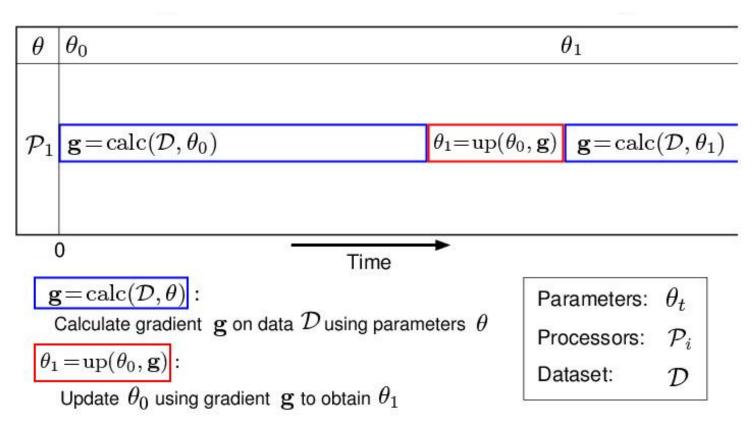
Data Parallelism



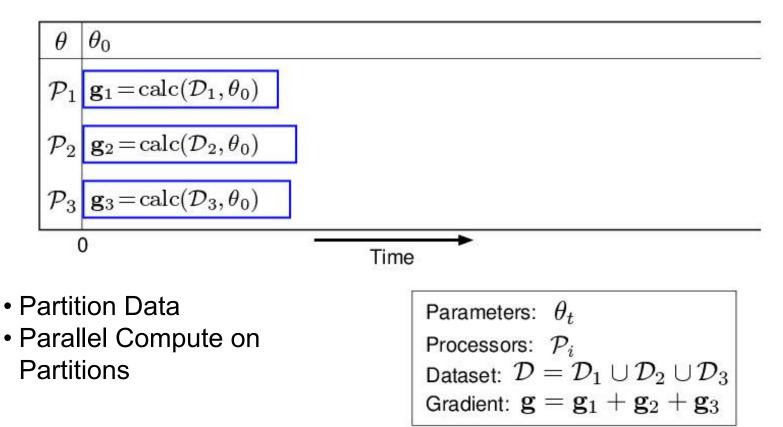




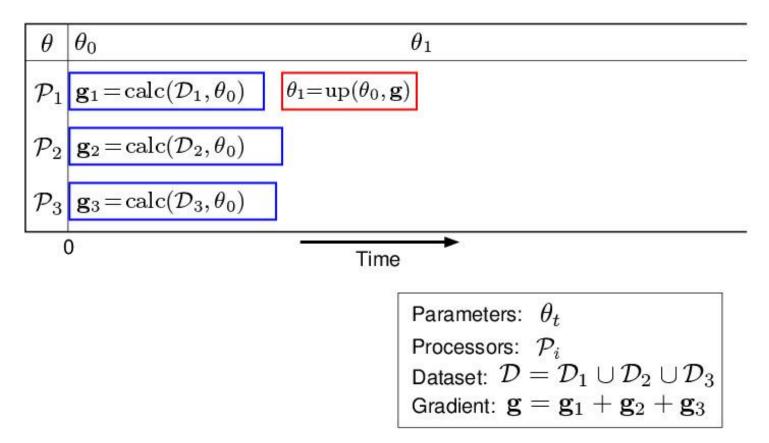




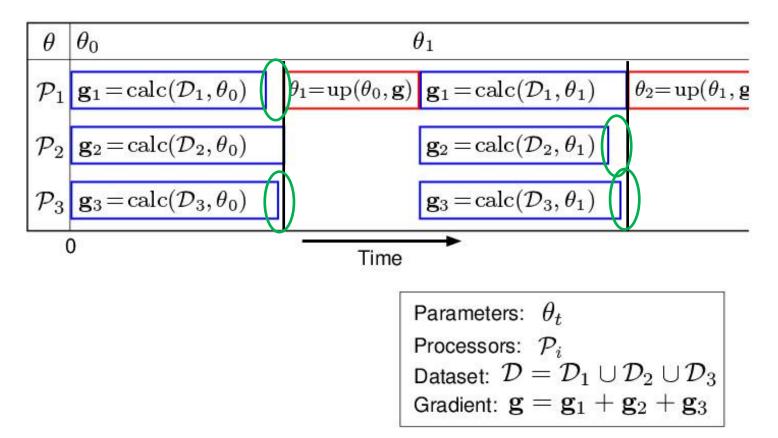
Parallel Batch Learning

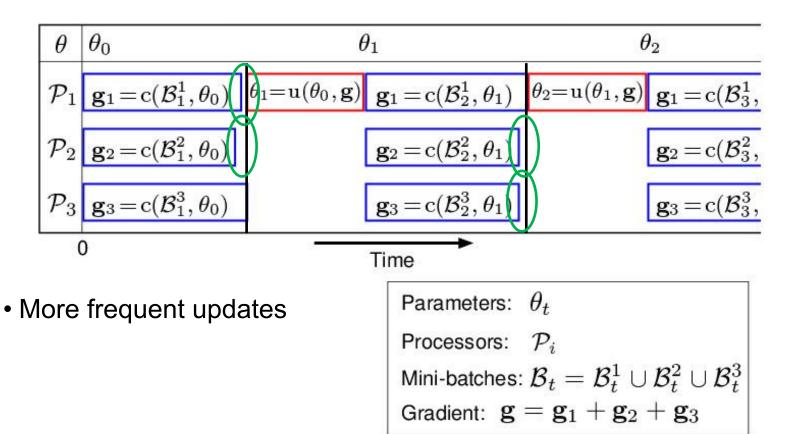


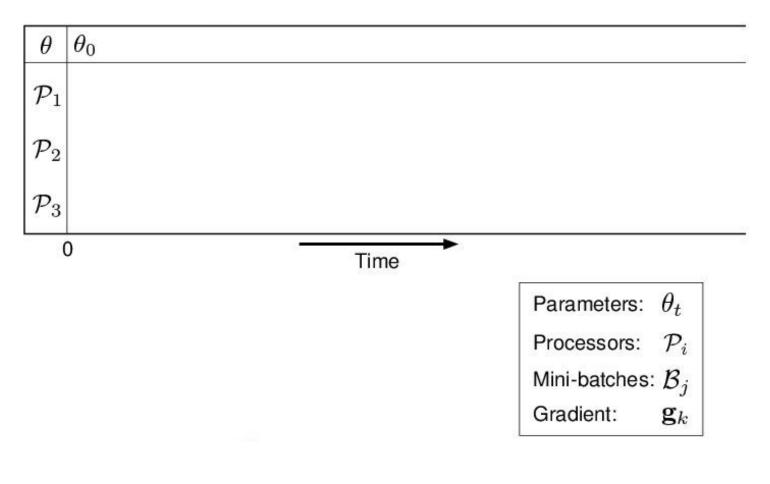
Parallel Batch Learning

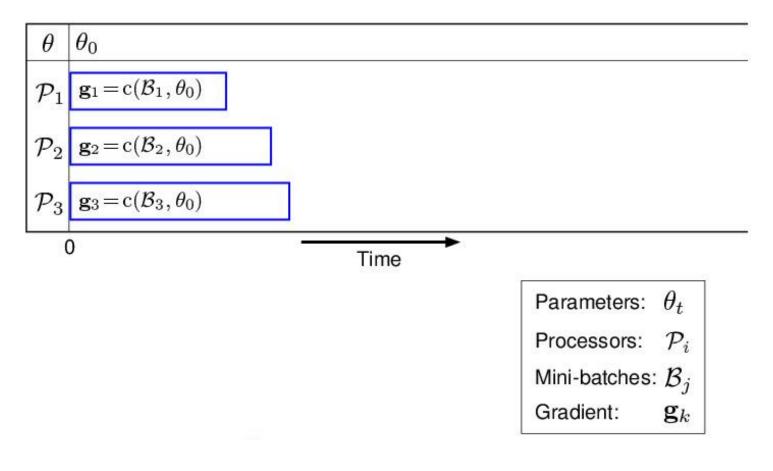


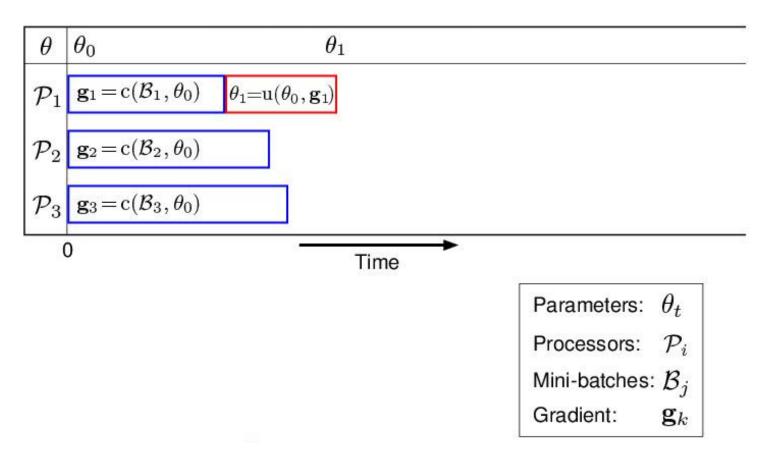
Parallel Batch Learning

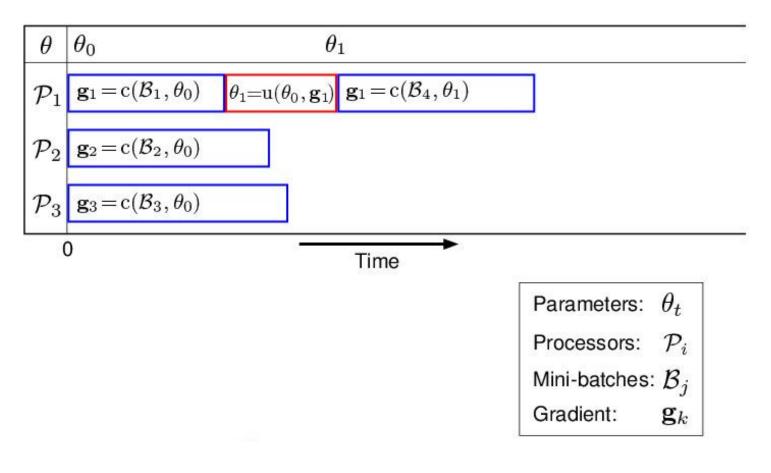


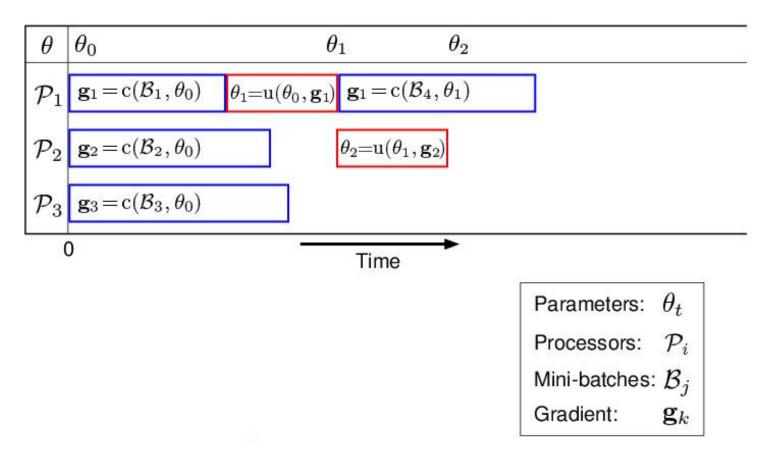


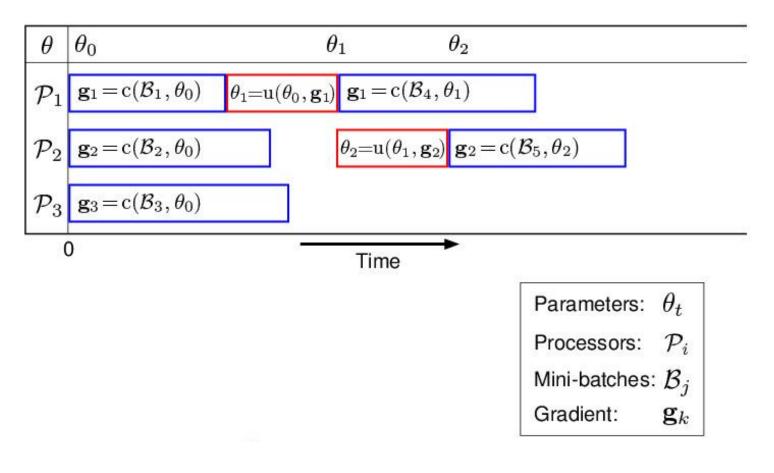


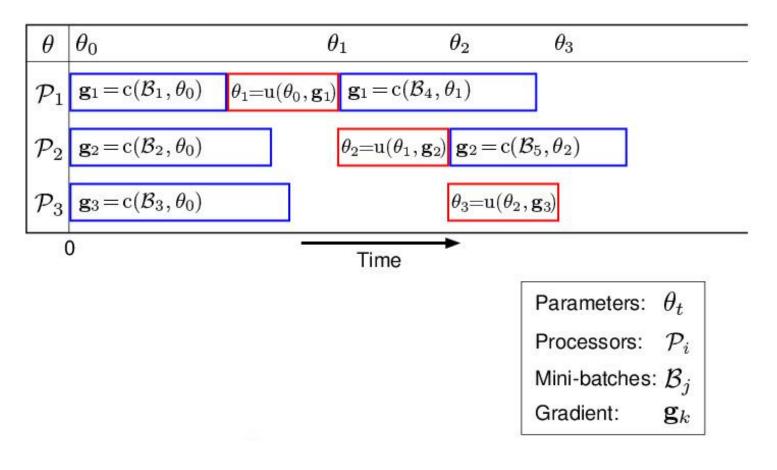


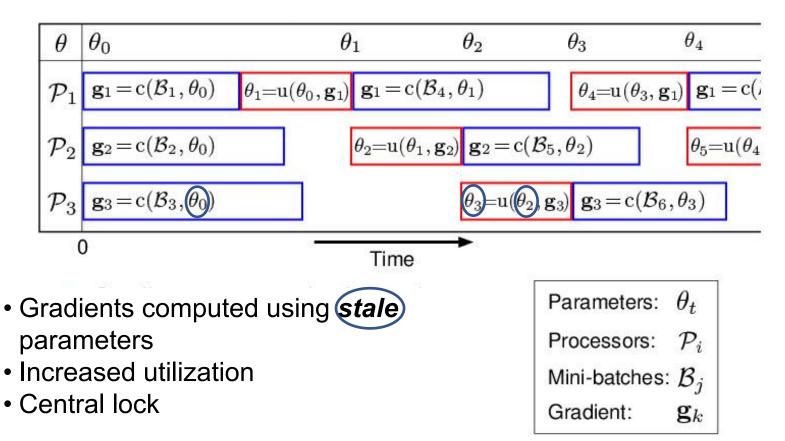












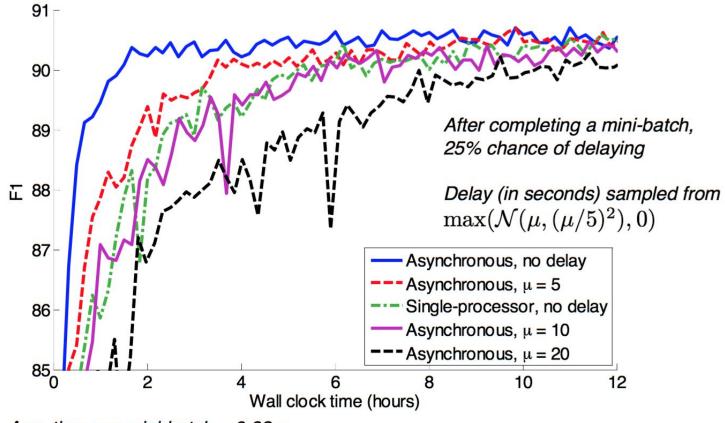
Distributed ML

- Parallelism
 - Model
 - o Data
- Learning
 - Synchronous
 - Asynchronous

Distributed ML: Challenges

- 1. Scalability
- 2. Privacy
- 3. Security

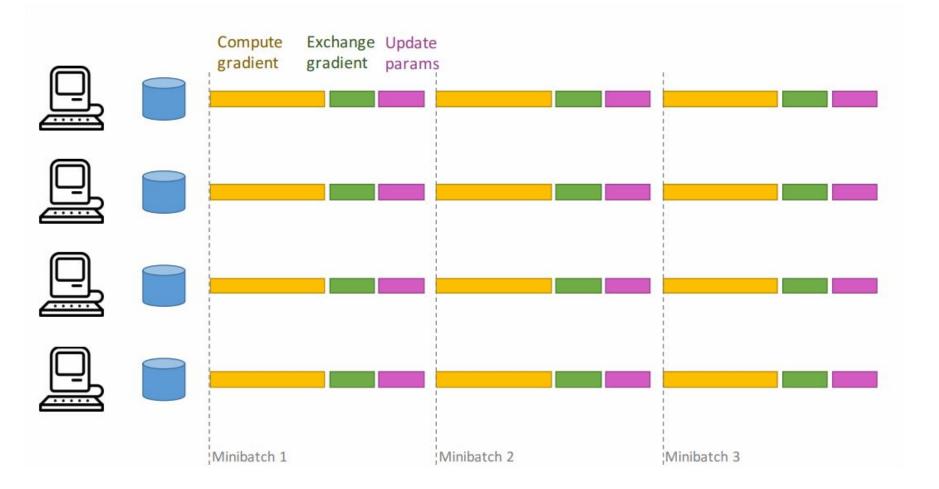
Scalability - Asynchrony



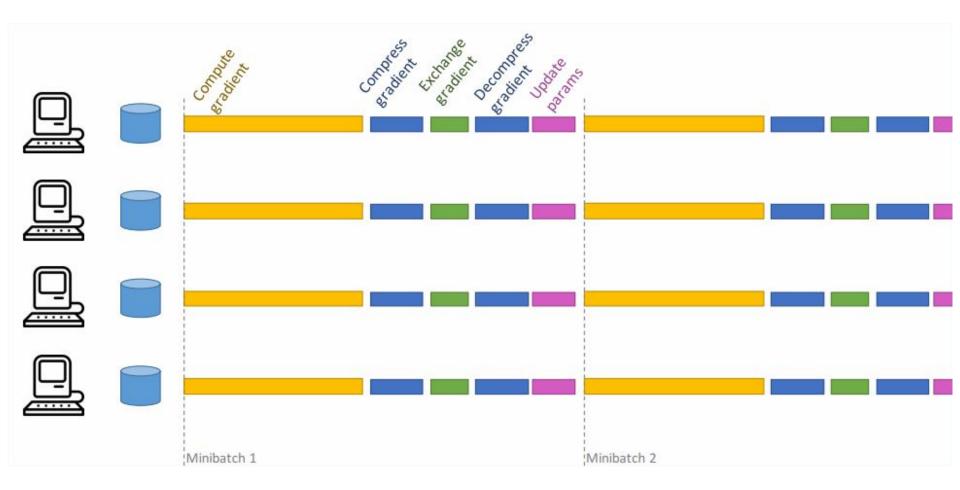
Avg. time per mini-batch = 0.62 s

Scalability - Communication

ImageNet classification (ResNet-152): Model/update size = ~ 250MB







ImageNet classification (ResNet-152): Mode/update size = ~ 250MB

Compression

- Distillation [PPA+18]
- Quantization [DGL+17]
 - SignSGD [BJ+18]

[DGL+17] Alistarh, Dan, et al. "QSGD: Communication-efficient SGD via gradient quantization and encoding." NIPS 2017.

[PPA+18] Polino, Antonio, Razvan Pascanu, and Dan Alistarh. "Model compression via distillation and quantization." ICLR 2018.

[BJ+18] Bernstein, Jeremy, et al. "signSGD: compressed optimisation for non-convex problems." ICML 2018.

Distributed ML: Challenges

1. Scalability

- a. Asynchrony
- b. Communication efficiency
- 2. Privacy
- 3. Security

• Medical data

weird sketchy stuff		

The search engine that doesn't track you. Learn More.

• Photos

• Search logs

Q

 \times

Privacy

<u>Differential Privacy</u>

- Decentralized Learning [BGT+18]
- Compression <-> DP [AST+18]
- Local Privacy
- MPC

[BGT+18] Bellet, A., Guerraoui, R., Taziki, M., & Tommasi, M.. Personalized and Private Peer-to-Peer Machine Learning. AISTATS 2018. [AST+18] Agarwal, N., Suresh, A. T., Yu, F., Kumar, S., & Mcmahan, H. B. (2018). cpSGD: Communication-efficient and differentially-private distributed SGD. NIPS 2018.

Distributed ML: Challenges

1. Scalability

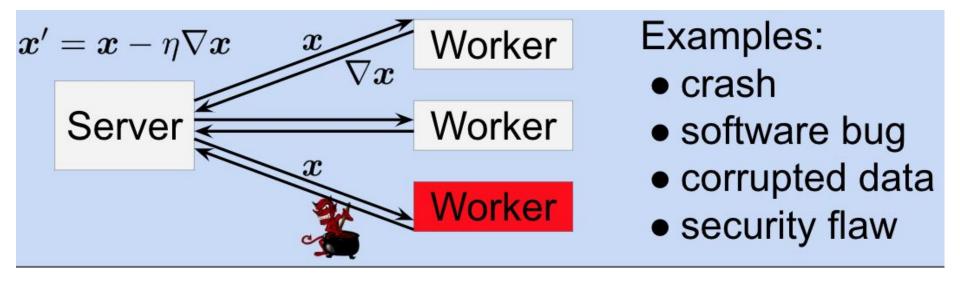
- a. Asynchrony
- b. Communication efficiency

2. Privacy

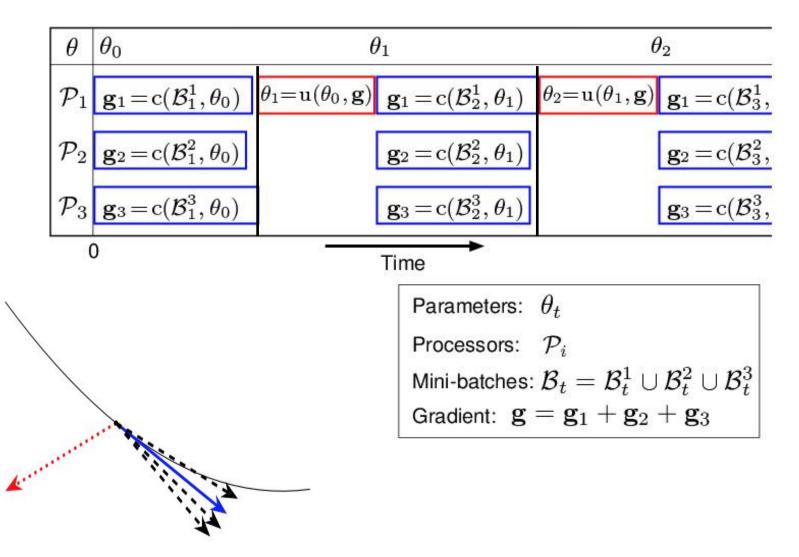
- a. Differential Privacy
- b. Local Privacy

3. Security

Security: Byzantine worker



Security: Synchronous BFT



Security: Synchronous BFT

Krum

[Blanchard, Peva, Mhamdi, E. M. E., Rachid Guerraoui, and Julien Stainer. "Machine learning with adversaries: Byzantine tolerant gradient descent." NIPS. 2017.]

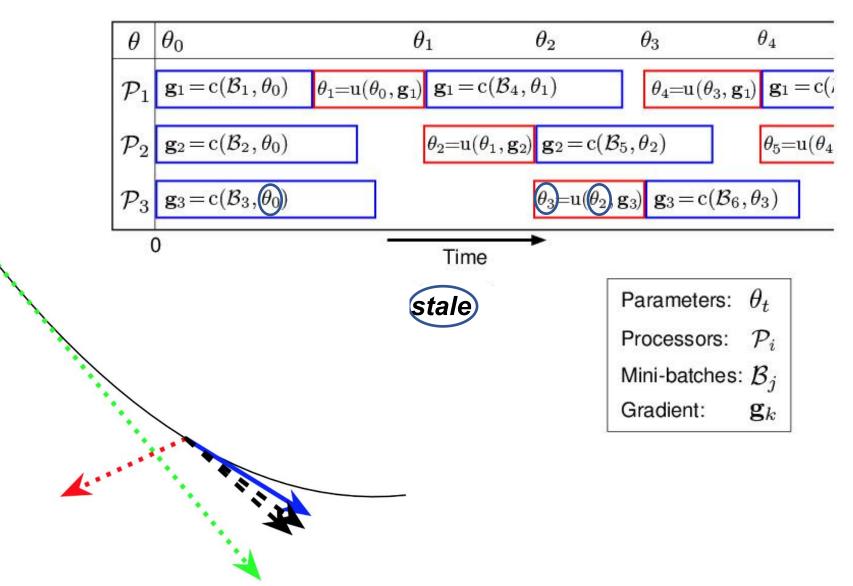
- Byzantine resilience against f/n workers, 2f + 2 < n
- Provable convergence (i.e., *safety*)

<u>How?</u>

- **How?** 1. Worker i: score(i) = $\sum_{n-f-2 \text{ closest vectors to } G_i} ||G_i G_j||^2$ Select gradient with minimum score
- 2. m-Krum

Majority + Squared distance-based decision -> BFT

Security: Asynchronous BFT



Security: Asynchronous BFT

<u>Kardam</u>

[Damaskinos, G., Mhamdi, E. M. E., Guerraoui, R., Patra, R., & Taziki, M. Asynchronous Byzantine Machine Learning. ICML 2018.]

• Byzantine resilience against f/n workers, 3f < n

• Optimal slowdown:
$$\frac{n-2f}{n-f} \leq SL \leq \frac{n-f}{n}$$

• Provable (almost sure) convergence (i.e., *safety*)

How?

- 1. Lipschitz Filtering Component => Byzantine resilience
- 2. Staleness Dampening Component => Asynchronous convergence <u>Asynchrony can be viewed as Byzantine behavior</u>

Distributed ML: Challenges

1. Scalability

- a. Asynchrony
- b. Communication efficiency

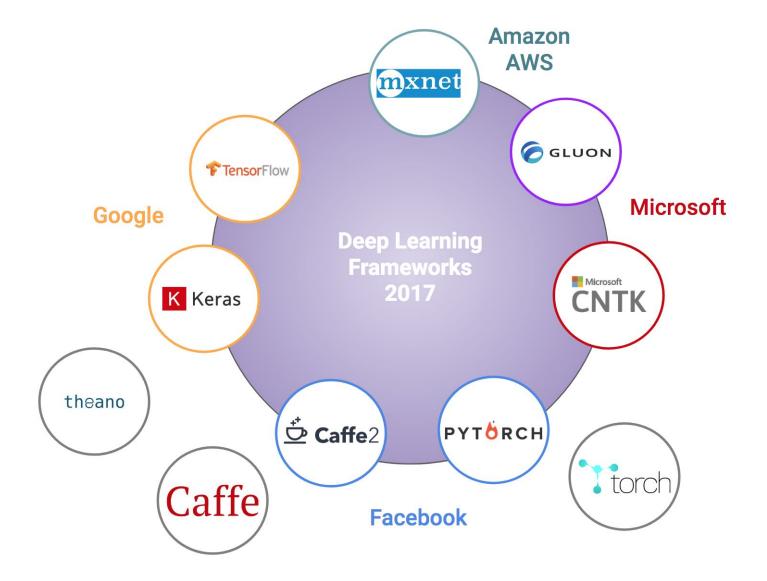
2. Privacy

- a. Differential Privacy
- b. Local Privacy

3. Security

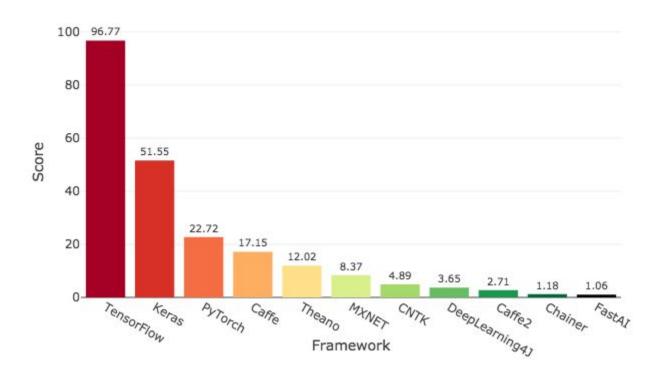
- a. Synchronous BFT
- b. Asynchronous BFT

Distributed ML: Frameworks



Tensorflow: Why?

Popularity



Tensorflow: Why?

Support

- Visualization tools
- **Documentation**

tensorflow tutorial

Search term

Worldwide *

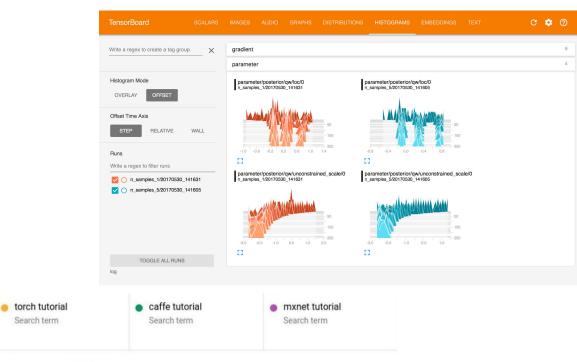
pytorch tutorial

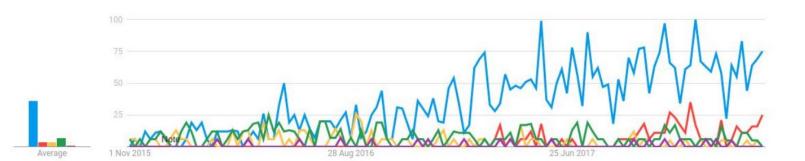
Search term

01/11/2015 - 22/03/2018 -

Tutorials

Interest over time





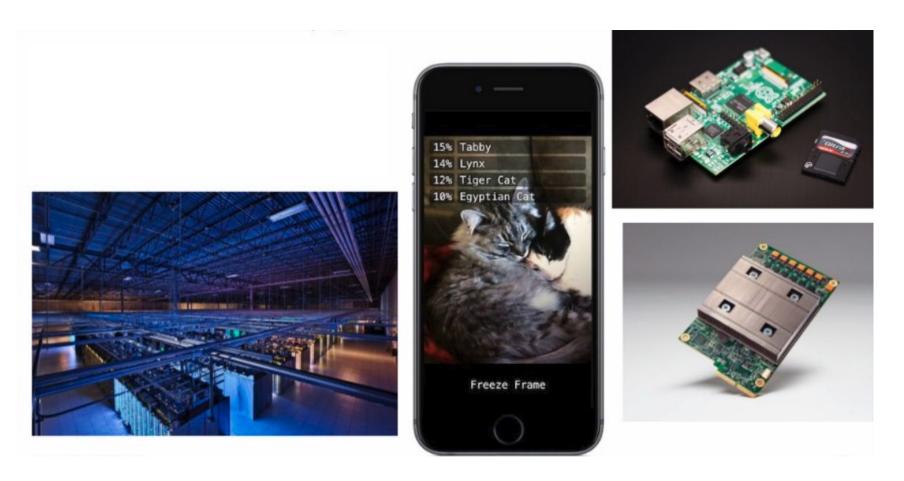
All categories *

Search term

Web Search -

Tensorflow: Why?

Portability - Flexibility - Scalability



Tensorflow: What is it?

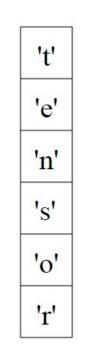
- Dataflow graph computation
- Automatic differentiation (also for while loops [Y+18])

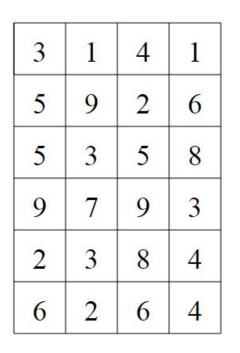
[Y+18] Yu, Yuan, et al. "Dynamic control flow in large-scale machine learning." EuroSys. ACM, 2018.

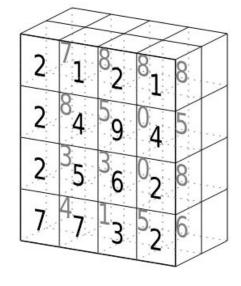
Multidimensional array of numbers

Examples:

- A scalar
- A vector
- A matrix







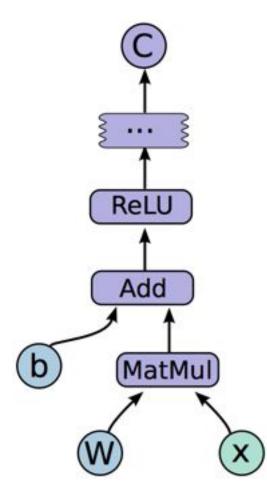
tensor of dimensions [4,4,2]

tensor of dimensions [6] (vector of dimension 6)

tensor of dimensions [6,4] (matrix 6 by 4)

DataFlow?

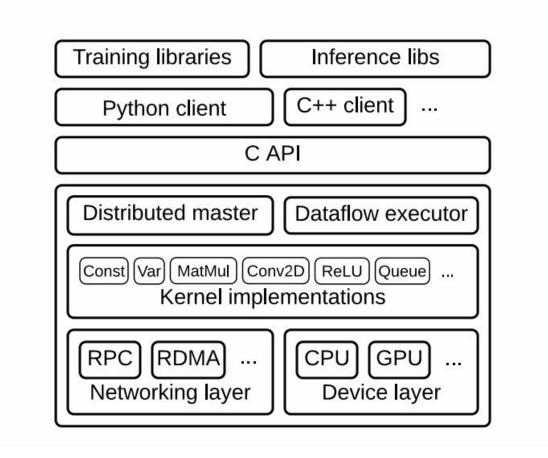
- Computations are graphs
 Nodes: Operations
 - Edges: Tensors
- Program phases:
 - Construction: create the graph
 - Execution: push data through the graph



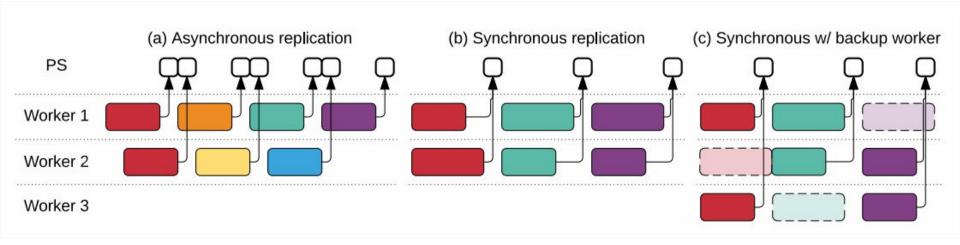
Tensorflow VS DataFlow Frameworks

- Batch Processing
- Relaxed consistency
- Simplicity
 - No join operations
 - Input diff => new batch

Architecture



Learning



TensorFlow BFT ? No!

How can we make it BFT?

[Damaskinos G., El Mhamdi E., Guerraoui R., Guirguis A., Rouault S.]