
Final exam 1: Solution

Exam rules:

1. Exam time: from 12.15 to 15.15.

2. The exam is closed book. No electronic devices are allowed.

3. You can use any notation for algorithms, but remember to write which variables
represent shared objects (e.g., registers) and which are process-local.

4. Try to describe (briefly) the main idea behind every algorithm you give.

5. Keep in mind that only one operation on one shared object (e.g., a read or a write
of a register) can be executed by a process in a single step. To avoid confusion
(and common mistakes) write only a single atomic step in each line of an algo-
rithm.

6. The exam grade will be computed in the following way: 1.0 (for handing in the
exam) plus the total number of points obtained divided by 2.

Assumptions:

1. We assume an asynchronous, shared-memory system of n processes, out of
which n− 1 might crash (i.e., wait-free).

2. Unless explicitly stated otherwise, we assume that every object is atomic (lin-
earizable) and wait-free.

Good luck!

1



Problem 1 (1 point)

1. Define the consensus object. (0.5 points)

2. What does it mean for an object O to have consensus number k? (0.5 points)

Solution. A consensus object has one operation propose(v), which returns a value.
When the operation returns, we say that the process decides. The following properties
are required:

1. No two processes decide differently.

2. Every decided value is a proposed value.

3. Each process decide after a finite number of steps.

An object O has a consensus number k consensus number, if k is the maximum
number of processes for which the object can solve a consensus problem.

Problem 2 (2 points)

Implement a MWMR atomic, multivalued register from any number of SWMR regular,
multivalued registers.

Solution. The required transformations are given in the slides on register transfor-
mations.

Problem 3 (2 points)

A stack is a shared object that implements a LIFO (last in, first out) data structure and
provides the following operations:

1. push(v) that puts element v at the top of the stack,

2. pop() that returns the element on the top of the stack and removes it from the
stack. The pop() operation will return the special value ⊥ if called on an empty
stack.

Your task is to:

1. Give an algorithm that implements wait-free consensus using (any number of)
stacks and registers in a system of 2 processes. The stack can be initialized to an
arbitrary state. (1 point)

2. Give an algorithm that implements wait-free consensus using (any number of)
stacks and registers in a system of 2 processes. The stack is initially empty.
(1 point)

2



Solution. The solution is (almost) identical to the one given in the exercises for
queues.

Problem 4 (2 points)

A queue is a shared object that implements a FIFO (first in, first out) data structure and
provides the following operations:

1. enqueue(v) that puts element v at the end of the queue,

2. dequeue() that returns the first element from the queue and removes it from the
queue. This operation returns the special value ⊥ if called on an empty queue.

Give an algorithm that implements a wait-free shared queue object using any num-
ber of compare-and-swap objects and registers in a system of n processes.

Solution. Use the universal construction from lectures, implementing consensus ob-
jects using compare-and-swaps. There exist more complex solutions, however the uni-
versal construction is enough to get full mark.

Problem 5 (1 point)

Consider a simple (distributed) networking object that has only one operation called
getsock(). If a process pi invokes getsock() (with no parameters) pi is returned a unique
socket object that it can later use (locally) to perform networking operations (i.e. send and
receive packets over network). For simplicity we assume that:

1. Each socket is uniquely identified by an integer 1, 2, . . .

2. No process invokes getsock more than M times in any execution, where M is
some known constant.

The networking object ensures the following (in every execution):

1. No two processes are returned the same socket by getsock().

2. The highest identifier of a socket returned by getsock (at any process) in a given
execution is bounded by a function f (k), where k is the number of invocations of
getsock in that execution, and f is independent of the total number of processes
n.

Write an algorithm that implements a wait-free networking object (i.e., its getsock
operation) using only (MRMW atomic multi-valued wait-free) registers and test-and-
set objects.

3



Solution. Implementing is networking object is essentially the same as giving a so-
lution to the renaming problem presented in class. You were given a solution using
only registers and test-and-set objects, which applies in this case as well. (There exist
solutions using only registers, but they are more complex.)

Problem 6 (1 point)

Prove that it is impossible to implement a wait-free consensus object using only queues
and atomic registers in a system of 3 processes.

Solution. Refer to “Wait-Free Synchronization” paper (second reference on the
course web page), Section 3.3.

Problem 7 (1 point)

A snapshot object maintains an array of registers R of size n, has operations scan() and
updatei() and the following sequential specification:

upon updatei(v) do
Ri ←v;

upon scan do
return R;

The following algorithm (incorrectly) implements an atomic snapshot object using
an array of shared registers R:

upon updatei(v) do
ts← ts + 1;
Ri ← (v, ts, scan());

upon scan do
t1 ← collect(), t2 ← t1;
while true do

t3 ← collect();
if t3 = t2 then return 〈 t3[1].val, . . . , t3[N].val 〉 ;
;
for k← 1 to N do

if t3[k].ts ≥ t1[k].ts + 1 then return t3[k].snapshot;
;

t2 ← t3;

procedure collect
for j← 1 to N do

xj ← Rj;

return x;

4

https://lpd.epfl.ch/site/_media/education/ca108.pdf


Give an execution of the algorithm which violates atomicity of the snapshot object.

Solution. Consider an execution given in the figure below. In the execution, the scan
of p2 records the snapshot that does not observe the concurrent update of p1. Process
p3 performs a scan that starts after the update of p1 is done, so it has to observe its
effects. It performs one collect before p2 writes the results of its scan into its position
in the snapshot object and another one after. Because the timestamps of these two
elements of the snapshot differ by one, it returns the scan of p2. The scan does not
include the update of p1, so the atomicity is violated.

p1

p2

p3

update1(1)

update2(2)

scan

collect collect

scan

Figure 1: An execution violating atomicity

5


