## Population protocols

Consider population comprising two species of agents $\sigma_{g}$ (green) and $\sigma_{b}$ (blue). We study the following predicate:

$$
\begin{equation*}
P: \quad \# \sigma_{g}-2 \cdot \# \sigma_{b} \leq 4 \tag{1}
\end{equation*}
$$

where $\# \sigma_{c}$ denotes the number of agents with color $c$. Recall the protocol $\mathcal{A}$ defined in the lecture.

- state space: leader bit $l \in\{L, \perp\}$; counter $u \in\{-s, \ldots, s\}$ where $s \geq 5$ is a fixed constant; output bit $b \in\{0,1\}$.
- initialization: leader bit $l_{i n i t}=1$ (all leaders); counter $u_{i n i t}=1$ if green agent, $u_{i n i t}=-2$ otherwise (blue agent); output bit $b_{\text {init }}=0$
- rules: when two agents $x, y$ meet, $\left(l_{x}, u_{x}, b_{x}\right),\left(l_{y}, u_{y}, b_{y}\right) \rightarrow\left(l_{x}^{\prime}, u_{x}^{\prime}, b_{x}^{\prime}\right),\left(l_{y}^{\prime}, u_{y}^{\prime}, b_{y}^{\prime}\right)$
- if both non-leaders $\left(l_{x}=l_{y}=\perp\right)$, then nothing changes.
- if, e.g., agent $x$ is a leader $\left(l_{x}=L\right)$, then

$$
\begin{aligned}
l_{x}^{\prime} & =L, \quad l_{y}^{\prime}=\perp \\
u_{x}^{\prime} & =q\left(u_{x}, u_{y}\right) \underset{\text { def }}{=} \max \left\{-s, \min \left\{s, u_{x}+u_{y}\right\}\right\} \\
u_{y}^{\prime} & =r\left(u_{x}, u_{y}\right) \underset{\text { def }}{=} u_{x}+u_{y}-q\left(u_{x}, u_{y}\right) \\
b_{x}^{\prime} & =b_{y}^{\prime}=b_{x}
\end{aligned}
$$

We assume the following fairness condition.
Definition 1 (Global fairness). An execution $E$ is fair if and only if for every configuration $C$ occurring infinitely often in $E$, for every configuration $C^{\prime}$ reachable from $C, C^{\prime}$ also occurs infinitely often in $E$.

Intuitively, it means that if something is reachable infinitely often, then it is actually reached infinitely often.
The goal of this exercice is to prove that $\mathcal{A}$ computes the predicate $P$. First, some warm-up.
Question 1. What does it mean for a population protocol to compute the predicate $P$ ?
Question 2. Show that in any fair execution of $\mathcal{A}$, there is eventually a single leader.
Question 3. Show that, for any configuration $C$ in an execution,

$$
\sum_{\text {agent } x} u_{x}(C)=\# \sigma_{g}-2 \cdot \# \sigma_{b}
$$

where $u_{x}(C)$ is the value of the counter of agent $x$ in configuration $C$.
Thanks to the previous claims, we can focus on the suffix $E^{\prime}$ (of the execution $E$ ) in which there is a single leader $\lambda$. We have to prove that, eventually, the counter $u_{\lambda}$ of $\lambda$ satisfies:

$$
\begin{equation*}
u_{\lambda}=\max \left\{-s, \min \left\{s, \# \sigma_{g}-2 \cdot \# \sigma_{b}\right\}\right\} \tag{2}
\end{equation*}
$$

The proof relies on the (classical) potential method. For any configuration $C$ in the suffix $E^{\prime}$, consider the quantity

$$
\begin{equation*}
p(C)=\sum_{x \neq \lambda}\left|u_{x}(C)\right| \tag{3}
\end{equation*}
$$

Intuitively, this function measures the (non-negative) "mass" of the non-leaders. We will show that $p$ cannot increase, and thus, is eventually constant.

Consider a transition $C \rightarrow C^{\prime}$ in the execution suffix $E^{\prime}$ due to the meeting of the leader $\lambda$ and (non-leader) agent $x$. We use the following notations:

$$
\begin{aligned}
& u_{\lambda}=u_{\lambda}(C) u_{\lambda}^{\prime}=u_{\lambda}\left(C^{\prime}\right) \\
& u_{x}=u_{x}(C) u_{x}^{\prime}=u_{x}\left(C^{\prime}\right)
\end{aligned}
$$

Question 4. Assume that $u_{x} \geq 0$. Show that

$$
\begin{aligned}
& u_{\lambda}^{\prime}=u_{\lambda}+\min \left\{u_{x}, s-u_{\lambda}\right\} \\
& u_{x}^{\prime}=u_{x}-\min \left\{u_{x}, s-u_{\lambda}\right\}
\end{aligned}
$$

Conclude that, in this case, $p$ does not increase during the transition.
Question 5. Show that $p$ does not increase either if $u_{x} \leq 0$.
We conclude that $p$ is eventually constant (non-increasing sequence of integer values). Let $E^{\prime \prime}$ be the suffix (of $E^{\prime}$ ) during which $p$ is constant.

Question 6. For any configuration $C$ in $E^{\prime \prime}$ show that, if it is impossible decrease $p$ from $C$, then one of the following cases holds:
$-p(C)=0$
$-u_{\lambda}(C)=s$ and for any $x \neq \lambda, u_{x}(C) \geq 0$
$-u_{\lambda}(C)=-s$ and for any $x \neq \lambda, u_{x}(C) \leq 0$
Conclude that

$$
u_{\lambda}(C)=\max \left\{-s, \min \left\{s, \# \sigma_{g}-2 \cdot \# \sigma_{b}\right\}\right\}
$$

Question 7. Show that $\mathcal{A}$ computes the predicate $P$. (don't forget the fairness assumption)

