
Self-Stabilizing spanning tree

1 Algorithm

Consider a graph where the nodes {p0, . . . , pn−1} represents a set of n processes. Two nodes are connected if
the corresponding processes can communicate. The node p0 is a distinguished process, and is referred to as
the root. Process pi communicates with its neighbour pj by writing to a shared register rij and reading from
rji. We say that the process pi owns the registers in which pi writes. That is, pi owns rij for all neighbours pj
of pi. Each register rij comprises two fields. The field rij .dis holds an integer value representing the distance
from the root p0 to pi. This integer value is bounded by some large constant K, and any assignment of a
larger value to the distance field results in the assignment of K. The field rij .parent holds a binary value: if
pi considers that pj is a parent, then rij = 1; otherwise rij = 0.

Finally, each process pi holds the following local variables: for each neighbour m, the variable lrmi is of
the same type as rmi, and is used to store values read from that register; an integer-valued variable dist; a
boolean variable F .

It is assumed that each process pi knows the list Ni of its neighbours, and that this list is ordered once
and for all. Alg. 1 shows the pseudo-code of the spanning tree construction algorithm. Note that, the lines
“for each j ∈ Ni” mean that we take the successive neighbours of pi in the predefined order.

Algorithm 1: Self-stabilizing spanning tree construction
1 case Node p0
2 while true do
3 foreach j ∈ N0 do
4 rij .(parent, dis)← (0, 0)
5 end
6 end
7 case Node pi 6= p0
8 while true do
9 foreach j ∈ Ni do

10 lrmi ← read(rmi)
11 end
12 F ← false
13 dist← 1 + min{lrmi.dis, m ∈ Ni}
14 foreach j ∈ Ni do
15 if F = false and lrji.dis = dist− 1 then
16 rij .(parent, dis)← (1, dist)
17 F ← true

18 else
19 rij .(parent, dis)← (0, dist)

20 end
21 end

Question 1. Consider a ring of n = 4 processes. Assume that, initially, all processes are in the same state,
and the registers contain the same values. Show that, if p0 executes the same code as the non-root processes,
then it is possible to define an ordering of neighbours for each process, and an execution such that: (i) every
process takes steps infinitely many times, (ii) the system does not converge. (Hint: use the fact that opposite
nodes “sees the same thing”)


