Self-Stabilizing spanning tree

1 Algorithm

Consider a graph where the nodes {po, ..., pn—1} represents a set of n processes. Two nodes are connected if
the corresponding processes can communicate. The node pg is a distinguished process, and is referred to as
the root. Process p; communicates with its neighbour p; by writing to a shared register r;; and reading from
7j;. We say that the process p; owns the registers in which p; writes. That is, p; owns r;; for all neighbours p;
of p;. Each register r;; comprises two fields. The field r;;.dis holds an integer value representing the distance
from the root py to p;. This integer value is bounded by some large constant K, and any assignment of a
larger value to the distance field results in the assignment of K. The field r;;.parent holds a binary value: if
p; considers that p; is a parent, then r;; = 1; otherwise r;; = 0.

Finally, each process p; holds the following local variables: for each neighbour m, the variable Ir,,; is of
the same type as r,,;, and is used to store values read from that register; an integer-valued variable dist; a
boolean variable F.

It is assumed that each process p; knows the list N; of its neighbours, and that this list is ordered once
and for all. Alg. 1 shows the pseudo-code of the spanning tree construction algorithm. Note that, the lines
“for each j € N;” mean that we take the successive neighbours of p; in the predefined order.

Algorithm 1: Self-stabilizing spanning tree construction

1 case Node po

2 while true do

3 foreach j € Ny do

4 rij.(parent, dis) < (0, 0)

5 end

6 end

7 case Node p; # po

8 while true do

9 foreach j € N, do
10 Irm: < read(rm;)
11 end
12 F « false
13 dist < 1+ min{lrm;.dis, m € N;}
14 foreach j € N; do
15 if F' = false and lr;;.dis = dist — 1 then
16 ri;.(parent, dis) < (1, dist)
17 F + true
18 else
19 ri;.(parent, dis) < (0, dist)
20 end

21 end

Question 1. Consider a ring of n = 4 processes. Assume that, initially, all processes are in the same state,
and the registers contain the same values. Show that, if py executes the same code as the non-root processes,
then it is possible to define an ordering of neighbours for each process, and an execution such that: (i) every
process takes steps infinitely many times, (ii) the system does not converge. (Hint: use the fact that opposite
nodes “sees the same thing”)



