Self-Stabilizing spanning tree ## 1 Algorithm Consider a graph where the nodes $\{p_0, \ldots, p_{n-1}\}$ represents a set of n processes. Two nodes are connected if the corresponding processes can communicate. The node p_0 is a distinguished process, and is referred to as the root. Process p_i communicates with its neighbour p_j by writing to a shared register r_{ij} and reading from r_{ji} . We say that the process p_i owns the registers in which p_i writes. That is, p_i owns r_{ij} for all neighbours p_j of p_i . Each register r_{ij} comprises two fields. The field $r_{ij}.dis$ holds an integer value representing the distance from the root p_0 to p_i . This integer value is bounded by some large constant K, and any assignment of a larger value to the distance field results in the assignment of K. The field $r_{ij}.parent$ holds a binary value: if p_i considers that p_j is a parent, then $r_{ij} = 1$; otherwise $r_{ij} = 0$. Finally, each process p_i holds the following local variables: for each neighbour m, the variable lr_{mi} is of the same type as r_{mi} , and is used to store values read from that register; an integer-valued variable dist; a boolean variable F. It is assumed that each process p_i knows the list N_i of its neighbours, and that this list is ordered once and for all. Alg. 1 shows the pseudo-code of the spanning tree construction algorithm. Note that, the lines "for each $j \in N_i$ " mean that we take the successive neighbours of p_i in the predefined order. Algorithm 1: Self-stabilizing spanning tree construction ``` case Node p_0 1 while true do 2 3 foreach j \in N_0 do r_{ij}.(parent, dis) \leftarrow (0,0) 4 5 end 6 end case Node p_i \neq p_0 7 while true do 8 foreach j \in N_i do 9 lr_{mi} \leftarrow \mathbf{read}(r_{mi}) 10 end 11 F \leftarrow \mathbf{false} 12 13 dist \leftarrow 1 + \min\{lr_{mi}.dis, m \in N_i\} 14 foreach j \in N_i do if F = false and lr_{ii}.dis = dist - 1 then 15 r_{ii}.(parent, dis) \leftarrow (1, dist) 16 F \leftarrow \mathbf{true} 17 18 else r_{ij}.(parent, dis) \leftarrow (0, dist) 19 end 20 21 end ``` Question 1. Consider a ring of n=4 processes. Assume that, initially, all processes are in the same state, and the registers contain the same values. Show that, if p_0 executes the same code as the non-root processes, then it is possible to define an ordering of neighbours for each process, and an execution such that: (i) every process takes steps infinitely many times, (ii) the system does not converge. (Hint: use the fact that opposite nodes "sees the same thing")