Self-Stabilizing spanning tree

1 Algorithm

Consider a graph where the nodes $\{p_0, \ldots, p_{n-1}\}$ represents a set of n processes. Two nodes are connected if the corresponding processes can communicate. The node p_0 is a distinguished process, and is referred to as the root. Process p_i communicates with its neighbour p_j by writing to a shared register r_{ij} and reading from r_{ji} . We say that the process p_i owns the registers in which p_i writes. That is, p_i owns r_{ij} for all neighbours p_j of p_i . Each register r_{ij} comprises two fields. The field $r_{ij}.dis$ holds an integer value representing the distance from the root p_0 to p_i . This integer value is bounded by some large constant K, and any assignment of a larger value to the distance field results in the assignment of K. The field $r_{ij}.parent$ holds a binary value: if p_i considers that p_j is a parent, then $r_{ij} = 1$; otherwise $r_{ij} = 0$.

Finally, each process p_i holds the following local variables: for each neighbour m, the variable lr_{mi} is of the same type as r_{mi} , and is used to store values read from that register; an integer-valued variable dist; a boolean variable F.

It is assumed that each process p_i knows the list N_i of its neighbours, and that this list is ordered once and for all. Alg. 1 shows the pseudo-code of the spanning tree construction algorithm. Note that, the lines "for each $j \in N_i$ " mean that we take the successive neighbours of p_i in the predefined order.

Algorithm 1: Self-stabilizing spanning tree construction

```
case Node p_0
 1
          while true do
 2
 3
              foreach j \in N_0 do
                   r_{ij}.(parent, dis) \leftarrow (0,0)
 4
 5
              end
 6
         end
    case Node p_i \neq p_0
 7
         while true do
 8
              foreach j \in N_i do
 9
                   lr_{mi} \leftarrow \mathbf{read}(r_{mi})
10
              end
11
              F \leftarrow \mathbf{false}
12
13
              dist \leftarrow 1 + \min\{lr_{mi}.dis, m \in N_i\}
14
              foreach j \in N_i do
                   if F = false and lr_{ii}.dis = dist - 1 then
15
                        r_{ii}.(parent, dis) \leftarrow (1, dist)
16
                         F \leftarrow \mathbf{true}
17
18
                   else
                         r_{ij}.(parent, dis) \leftarrow (0, dist)
19
              end
20
21
          end
```

Question 1. Consider a ring of n=4 processes. Assume that, initially, all processes are in the same state, and the registers contain the same values. Show that, if p_0 executes the same code as the non-root processes, then it is possible to define an ordering of neighbours for each process, and an execution such that: (i) every process takes steps infinitely many times, (ii) the system does not converge. (Hint: use the fact that opposite nodes "sees the same thing")